DOCUNMENT RESUME

ED 052 605 88 EM 609 059
AGTHOR Koetke, Walter
TITLE Computers in the Classroom: Teacher's Resource
Manual for Algebra.
INSTITUTION Digital Equipment. Corp., Maynard, Mass.
SPONS AGEXCY Massachusetts State Dept. of Education, Boston.;

Office of Education (DHEW), Washinqgton, D.C.

PUB DATE 71

NOTE 134p.

AVAILABLE FROM Digital Equipment Corporation, Educational Marketing
(5-2), 146 Main Street, Maynard, Massachusetts 01754

($3.00)
EDRS PRICE EDRS Price MF-$0.65 HC Not Available from EDRS.
DESCRIPTORS *Algebra, *Computer Assisted Instruction, Computer

Programs, *Mathematics Instruction, Mathematics
Materials, Problem Sets, Programing, Remedial
Mathematics, *Secondary School Mathematics,
*Teaching Guides

ABSTRACT

Demonstration programs, possible assignments for
students (with solutions), and remedial drill programs for students
to use are presented co aid teachers usiug a compu:er or a computer
terminal in the teaching of algebra. The text can be followed page by
page or used as a well-indexed reference work, and specific
suggestions are made on how and where to use the computer within the
schools' present curriculum. Almost all topics discussed are
completely self-contained. The order of major topics follows that
used in the Modern Algebra series by Dolciani, Berman, and Wooton:
arithmetic operztions, variables, and sets; solving equations and
inequalities in one variable; using the properties of equality,
addition, and multiplication when solving equations; negative
numbers; solving first degree equations and inequalities; operations
vith polynomials; and factoring. Sample programs are writcten using
the Digital Fquipment Corporation's FOCAL programing language, but
they can be translated into any other interactive language that is
suitable for student use. The manual is in loose-leaf form and
pirovides a complete index. (Author/JdY)

4

ED052605

COMPUTERS
1IN THE
CLASSROOM

TEACHER'S RESOURCE MANUAL
FOR ALGEBRA

Written by.

Walter Koetke
Lexington High School

" PROCESS WITH MICROFICHE AND
PUBLISHER'S .PRICES, MICRO« ;
- FICHE REPRODUCTION ONLY.

ED052605

COMPUTERS IN THE CLASSROOM

TEACHER'S RESOURCE MANUAL
FOR ALGEBRA

Written by:

} Walter Koetke
' Lexington High School

Produced jointly under the auspices of Digital Equipment Corporation
and Project LOCAL (Title lil, ESEA, 67-4533). Project LOCAL in-
cludes the Massachusetts public school systems of Westwood, Lexing-

ton, Natick, Needham and Wellesley and is directed by Robert N.
Haven.

The work presented or reported herein was performed pursuant to a grant
from the United States Office of Educaticn, Department of Health, Edu-
cation and Welfare. However, the opinions expressed herein do not
necessarily reflect the position or policy of the United States Office of

Education and no official endorsement by the United States Office of
Education should be inferred.

PSSy

U

o DIGITAL EQUIPMENT CORPORATION ¢« MAYNARD, MAEE: CHUSETTS

o

The following are registered trademarks of Digital Fquipment
Corporaticii, Maynard, Massachusetts

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTEP LAB

CONTENTS

Page
I. Arithmetic Operations, Variables, and Sefs
' A. Rules of Algebraic Precedence 1
B. The Signs of Equality and Inequality 6
C. Introducing Exponents 7
D. Plotting Equalities and Inequalities on the Number Line 9
E. Sets (Union, Intersection, and Subsets) 13
F. Supplementary: Numbers in Other Bases 19
II. Solving (by Substitution) Equations and Inequalities in One Variable
A. Solving Equations 23
B. Solving Inequalities 25
C. Words to Algebraic Expressions 29
D. Supplementary: Solving (by Substitution) Equations and
Inequalities in Two Variabies 31
E. Supplementary: Number Guessing 33
. Using the Properties of =, +, and * When Solving Equations.
A. Postulated Properties: Closure, Commutative, Associative,
Distributive, Inverse, and Identity 37
, B. Supplementary: Modula: Arithmetic : 40
C. Developing and Using Basic Theorems for Solving Simple
Equations 45
D. Supplementary: Very Elementary Statistics = Sum,
Mean, Standard Deviation 51
E. Supplementary: Ordering 53
AV Negative Numbers
A. Plotting Equalities and Inequalities on the Number Line 57
B. Addition and Subtraction on the Number Line
(Using Vector Representation) 57
C. Absolute Value, Operations with Negative Numbers, and o
More Theorems for Solving Equations I - T8l
D. Supplementary: Addition and Subiraction '6|A’77.Bvif;ary Numbers
Lsing Compiement Arithmetic 65
V. Solving First Degree Equations and Inequalities
A. Solving Inequalities 69
B. Solving Equations \ 74

CONTENTS {Cont)

Page
C. Word Problems 78
D. Supplementary: Magic Squares 82
V1. Operations With Polynomials
A. Addition and Subtraction 87
- B. Multiplication 88
C. Division 96
D. Supplementar;: Pascal's Triangle Using Random Numbers 103
VII. Factoring
A. Prime Numbers, Factors of Integers, and Monomial Factors
of a Polynomial 109

=Y

Q

ERIC

Aruitoxt provided by Eic:

?REFACE

The purpose of this text is to suggest methods for using a computer or computer terminal in
the teaching of Algebra I, II, and Il to students with a wide range of mathematical ability. This
edition constitutes about one-half of the complete book; it is being released in this form so as to be
available for the 1968-69 academic year. The complete work will be available in 1969.

This text is intended to serve as a handbook for teachers rather than for students, as demon-
stration programs, possible assignments for students (with solutions), and remedial drill programs for
students to use, are al!l included. Although the text can be followed page by page, it is primarily in-
tended to be a well-indexed reference work as specific suggestions are made as to how and where to use
the computer within the schools' present curriculum. Almost all topics discussed are completeiy self-
contained, thus the suagesiions made can he used without reference to programs or ideas presented in
other sections of the text. The order of major topics is similar t¢ that used in the Modern Algebra series
by Dolciani, Berman, and Woofon] .

The loose-leaf format and the detailed indzx of the text should complement the intended use
of this material. When a particular topic is to be presented to the class, the teacher can use the index
to locate various methods of presentation or possible class assignments. More often than not, the sug-
gestions found in the text will be modified to heiter suit the specific needs of the teacher's planned
presentation. These modifications cun then be inserted into the text for easy reference in the future.
Note that each of the sumple programs included represents only one possible solution to a given problem,
These samples were selected because of their exceptional clarity and/or because they are typical of
many student solutions. Thus they rarely represent the best algorithm or most efficient program.

This text is not intended to teach either programming techniques or a programming language.
Although all sample pregrams are written using the Digital Equipment Corporation’s FOCAL language
(4K version), they can be easily translated into any other interactive |anguage that is suitable for
student use. This text, accompanied by the FOCAL Programming Manual , might also be used to
provide self-instruction in programming for teachers without previous experience using computers. Al-
though the text does not contain an entire section devoted to techniques for teaching programming to
students, Section VII-A contains several examples which are particularly useful in this endeaver.

When reading the examples in this text, one should keep in mind that almost all programs,
including those that appear tutorial, are most beneficial when ussigned as programs to be written by
students. The complete program has been included as one possible solution to such an assignment and

not as a "cook-book" program for teachers to type and students to use.

; Houghton Mifflin Company, Boston, 1965.
Digital Equipment Corporation, 1968, Order No. DEC-08-AJAB-D

When used as intended, this text is not and cannot be complete, for new ideas and new
programs vill be added on a continuing basis, Additional material is already being prepared and will
be made awajlable as soon as possible,

Any suggestions concerning programs and/or topics that might be included, as well as re-
actions to the contert and/or format of the text, should be addressed directly to the author. Every
effort will be made to incorporate suggestions received in this manner into the forthcoming sestions

of the text.

Walter Koetke
Lexington High School
Lexington, Mass,

vi

N

~

¥

Qqa?

ERIC

Aruitoxt provided by Eic:

I. ARITHMETIC OPERATIONS, VARIABLES, AND SETS

A. Rules of Algebraic Precedence

A computer quite naturally reinforces the rules of algebraic precedence, since almost all
computer languages require the user to write expressions on a single line according to these rules. An
examination of these rules is frequently one of the first topics discussed when teaching programming.

Motivation for the need to establish rules of algebraic precedence can be quickly attained
by having the students evaluate expressions written on a single line. For example, given expressions
such as 2%6/343 and 16t1/2, there will be several solutions other than the correct answers of 7 and 8.
By using the computer to evaluate several similar expressions, the students can be led to "discover"
the precedence rules un their own.

One way of presenting this topic, which also reinforces the proper use of parentheses, is to
present an expression such as 36/3*12 - 3*12/36, and then ask students to insert parentheses to obtain
as many different values as possible. A typical student effort using only a single pair of parentheses

might appear as:

*¥*TYPE 36/3%12-3%12/365!!
=+ De DY

*TYPE (36/3)%12-3%¥12/36,!!
=+ 143.0000

*TYPE 36/7(3%12-3%12/36), !
=+ 1.00286

*TYPE 36/73%(12=-3%12/36),!!
=+ 1.92989

*TYPE 36/73%C12-3)%12/36,!!
=+ 0.00631

*¥*TYPE (36/3%12=-3)%12/36,!
=~ Be 6667

CTYPE 36/3%12-3%(12/36), !
=+ D.OROD

E3

NOTE

The last example would not be considered correct since
the result is not different from all of the preceding answers.

Another type of picblem often enjoyed by students is writing an expression without using
parentheses. For:example, write the expressions 84.6/(46.8%0.0056) and (16.8+13.052)t2 without

parentheses.

¥TYPE 7844 6/C45.8%040056)25 15284 6/46.8/0.00562,!!
B4.6/C46. BkD.DOSE)=+ 322.8020
B4e 6/ 46+48/70.0056=+ 322.4020

*TYPE 2C16eB8+13.0032)Y1272,!1,216.812+2%16eK¥13.U52+13.052122, 1!
(16.5+13.052)12=+ $91.1420
16e812+2%1 6.8%13.0852+13.05212=+ 891.1420

%

Even with this elementary use of the computer, better students might be motivated to study
farther by having them express continued fractions on a single line. For example, several approximaticns

to the continved fraction

appear as:

*TYPE 1+1/1, 1!
=+ 2. 0000

*TYPE 1+1/7C1+171),!!
=+ 1.5600

*TYPE 1+1/7C1ei 7 C8+1710),5 1!
=+ 1.6667
i
*TYPE 1+1/7C1+1/7C1+1/731+1713)), 118
=+ 1.6000

*TYPE 1+41/7C1+1/7C1+1/7C1+1/7C1+1/71)))), 1!
=+ 1.6252

*TYPE 1+1/7C1+1/7C1+41/7C141/7C1+17C1+171))0)3)), 18
=+ 16154

O

ERIC g

Aruitoxt provided by Eic:

*TYPE 1+1/7C1+1/7C1+17Ci+1/7C1+1/7C1+1/7C1+171)3)))2)), 11}
=+ 1.6190

*TYPE 1+1/7C1+1/7C1+1/7C1+1/7C1+1/7C1+1/7C1+17C1+171)3)3)))),1!!

3 =+ 1.6176

*TYPE 1+1/7C1+1/7CH+1/7C1+1/7C 1+ 1/7C141/7C +1/7C1+1/7C1+1/71))0))0)))3), 4!
=+ 1.6182 '

*

The same topic can also be presented using variable names if students are familiar with this
concept. This i also a good way to help introduce variables to those unfamiliar with them. A student

solution to a problem such as evaluating

A+B 1

2,2
A+ THARE ¢ ond opl-C

when A=3, B=5, and C= ~4 might appear as:

*SET A=33 SET B=53; SET C=-4
*TYPE (A+B)/(A%C),!!
== Q6661

*TYPE 1/C+B/(A%C),!!
=- Re AART

b

TYPE +W1(Ar2+0r2)/B-C, V!
=+ 4.0500

*

One side benefit of using the computer to evaluate student work in this fashion is that the
teacher can easily check the validity of a solutior regardless of the form of the solution. This allows
each student complete freedom to solve each problem in his own way.

The computer itself can also be utilized to check the student solutions. Consider the very

brief problem set:

Given that A=2, B=3, and C=4, determine X,Y, and Z where X =

c
_AB-- A _6A

X==yg - . Y= 7 omdZ"

ERIC 10,

Aruitoxt provided by Eic:

A student solution would appear much like that shown in the previous example. However, by using

the following teacher=written program, the students' solutions can also be chacked by the computer.

(See Page 5 for further description of this program.)

21.01

Pl.g2
61.23
B1.04
21.05
P1.06
21.07
21.08
21.09
21.10
21.11

B1.12
21.12
Nl.14
f1.15
21.16
B1.17
N1.18
N1.19
01.20

C SOLUTION ANALYSIS

SET N=0@3 SET A=23 SET B=33 SET C=4

IF (X-(A*BtC-A%*B)/(1-B)) 1.05, 1.04> 1.05

SET PL1l=1

IF (Y-C6X%A/Bt2)) 1.07 1.06>5 1.07

SET PL2]=1

IF (Z-1/FSOT(C/(A%B))) 1.89, 1.88, 1.089

SET PL31=1

TYPE 11!

FOR 1I=1,33 IF (PLIJ-1) 1.113 SET N=N+}

CONTINUE

TYPE '"YOU WERE CORRECT ON ", 7%1.0,N»%8.04,'" OF THE 3 PROBLEMS",!!
IF (-N) 1.143 TYPE "I'D SUGGEST SOME EXTRA HELP.",!!3 QUIT
IF (N-3) 1.153 TYPE "AN EXCELLENT JOBe',!!3 QUIT

TYPE ""THE VARIABLES YOU MISSED #WERL:

IF <1-P[1)) 1175 1e175 TYPE "X "

IF ¢(1-PL23) 1.18, 1.185 TYPE "Y

IF (1-PL31) 1.19» 1.195; TYPE "z

TYFPE 11!

ERASE

Student work to be checked using this program can be prepared by punching an off=line tape using direct

commands:

ERIC

Aruitoxt provided by Eic:

*C STUDENT IDENTIFICATION
*

*SET A=23 SET B=33 SET C=4
*SET X=(CA*BtC-A%*BY/(1-B)
*SET Y=6%A/Bt2

*SET Z=1/FSQT(C/ CA%B))
*TYPE ', X5 '5Ys1,7,!

=- 78.0000
=+ 1.3333
=+ 1.2247
*DO 1

YOU WERE CORRECT ON =+3 OF THE 3 PROBLEMS
AN EXCELLENT JOB.

*

11

e !

-

4
]

Jpes

This job can also be done by preparing a short program such as:

*2.,01 C STUDENT IDENTIFICATION
*

*2.1 SET A=23 SET B=35; SET C=4
*#2.2 SET X=(A%*BtC-A%B)/1-B
*2.3 SET Y=6%A/Bt2

*2.4 SET Z=1/FSQTCC(C/AY*B)
#*2.5 TYPE '1,X,'5Y»1525"

*2.6 DO 1

*D0O 2

=+ 153.0000

=+ 1.3333
=+ 0. 4082

YOU WERE CORRECT ON =+1 OF THE 3 PROBLEMS
THE VARIABLES YOU MISSED WERE: X Z

*

In both cases, the student work requires only the addition of the single extra command DO 1

‘o begin the checking program. Note that each student program begins with a comment line to identify

the student. This technique has proven very useful, for it immediately identifies the program being run

as well as forming an indelible label on the punched tape itself. Additional use could be made of the

checking program by adding the capability of tabulating the number of students who missed each item

and typing this information for the teacher after all programs have been checked.

Note that the solution analysis program can be easily miodified to a teacher's specific needs.

Within this program, the key steps are:

1.02 -

1.03 -

1.08

1.10-

L.

1.12=-

1.18

A,B, C are defined because students will occasionally assign incorrect values to these
variables,

N is used to count the total number of correct answers.

These steps, taken in pairs, compare the student defined variables X, Y, Z with the
correct values. Note that this technique DOES NOT allow the teacher to assign a
problem with a correct arswer of zero, because this program assigns the value 0 to any
undefined variable .

These steps count the number of correct responses

These steps are all used for typing the appropriate diagnostic with an appropriate

12

In order to change the assignment from that used in the example to another one involving

different values of A,B,C and different expressions for X,Y,Z, only steps 1.02, 1.03, 1.05, and 1.07

need to be changed. To add more expressions to this assignment, steps to check the additional variables

would be inserted between 1.08 and 1.09 and after 1.18.

B. The Signs of Equality and Inequality

In most classes the basic concepts of equality and inequality are already understood and little

or no computer assistance is necessary. However, this topic does complement the simultaneous presen-

tation of programming using an IF statement. A usefu! exercise for students is to write a program which

will tell whether or not two given expressions are equal. As well as requiring the use of an IF statement,

this program demonstrates a basic technique for writing a program which will accept a general expres-

sion for later evaluation. A good student-written program is:

gl.10
B1.20
21.30
21. 40

02.10
02.20
02.30

C TEST FOR EQUALITY .
TYPE "TO TEST FOR EG@UALITYs SET YOUR FIRST EXPRESSION EQUAL®, !

TYPE "TO A AND YOUR SECOND EXPRESSION EQUAL TO B , THEN',!
TYPE “TYPE DO 2.*,!!

IF (A-B) 2.2, 2.3, 2.2
TYPE "YOUR EXPRESSIONS ARE NOT EQUAL.'",!'!3 QUIT
TYPE *“YOUR EXPRESSIONS ARE EQUAYL .*% it

Note that part 1 is used only to type out directions and is not really a necessary part of the program.

A sample run of this program is:

O

ERIC

Aruitoxt provided by Eic:

*DO 1
TO TEST FOR EQUALITY», SET YOUR FIRST EXPRESSION EQUAL

TO A AND YOUR SECOND EXPRESSION EQUAL TO B , THEN
TYPE DO 2.

*SET A=2t5

*SET B=2%2%2%2%2

*D0 2

YOUR EXPRESSIONS ARE EQUAL.

*SET A=.0081+8

*SET B=.008+1

*D0 2

YOUR EXPRESSIONS ARE NOT EQUAL.

*

13

b

O

ERIC

Aruitoxt provided by Eic:

The student exercise might be modified by requiring the program to distinguish between the three cases:
equal to, greater than, or less than.

Even in the sample program, some round=off error will occur due to computer approximations
(10*.2 and 10*(1/5) wiil be called not equal); thus better students might enjoy the challenge of trying

to reduce this error. One possible solution is:

02,10 IF (FITRCCA-BY*100)) 2.2, 2.3, 2.2
02.20 TYPE "YQUR EXPRESSIONS ARE NOT EQUAL.'",!!3 QUIT
92.30 TYPE "'YOUR EXPRESSIONS ARE EGUAL.'",!!

This use of the integer part function will eliminate all round=off error before the third decimal place,

but will indicate equality for two expressions which differ after the second decimal place.

C. Introducing Exponents

When introducing exponential notation, the computer can be used with programs much like
those already discussed in this chapter. By having students write exponential expressions on a single
Yine (Section 1=A) they receive practice with exponents as well as reinforcement of earlier work.
Similarly, tests for equality (Section I~B) can be run with expressions like 52" and (32) .

By limiting the set of numbers being considered, discussions centered around questions like
"Is X3 always greater than X2?" are often beneficial. To supplement these discussions, one could use

programs like those in Section I~B, or simply direct commands which can be used to examine several

cases:

*FOR X=-5,53 TYPE X,'" YaXt2," s X135 !
=~ 5 =+ 25 =- 125
=- 4 =+ 16 == 64
=- 3 =+ 9 =- 27
=~ 2 =+ 4 =- 8
=~ 1 =+ 1 =~ 1
=+ [4] =+ ? =+ ?
=+ 1 =+ 1 =+ 1
=+ 2 =+ 4 =+ 8
=+ 3 =+ 9 =+ 217
=+ 4 =+ 16 =+ 64
=+ S =+ 25 =+ 125
*

Students often enjoy finding the algebraic expressions used to generate a given table. For example,

one might ask what expressions were used to generate:

14

-3 +8 +12

-2 +3 +6
-1 +0 +2
+0 -1 +0
+1 +0 +2
+2 +3 +4
+3 +8 +12

The correct expressions are X, x2-1 , and X2-X.

Students are capable of finding surprisingly complex expressions, even though they are
approaching this exercise on an intuitive level. Using this fype of exercise also introduces a sys=

tematic method of search which has wide application in other areas.

The writing of a program which uses neither functions nor the operator t to compute NE
(where N =any number and E = any integer) is a good assignment for better students in Algebra I and
all students in Algebra 11 who are convinced they have already mastered the use of exponents. To write
such a program, the student must completely understand the definition and all of the special cases that

can occur. One solution to this problem is:

15 ..

.

-

A
/

i
* -

A program which follows this flow chart is:

01.01
01.02
01.03
01,0k
01.05
01.06
01.07
01,08
01.09
01.10
01.11
L J

C PROGRAM TO COMPUTE N+E, WHERE E IS ANY INTEGER.
ASK 1N?7,1 E?," N4E "

IF (PABS(N)+FABS(E)) 1.05,1.04,1,05
TYPE " IS5 NOT DEFINED,"!!; QUIT

iF (N) 1,07,1.06,1.07

TYPE %,0,!11; QUIT

IF (E) 1,09, 1.08, 1.10

TYPE %,1,!1; QUIT

SET N=1/N; SET E=-E

SET ANS=1; FOR I=1,E; SET ANS=ANS*N
TYPE %, ANS,!! P

Several runs of this program are:

*GO
N:=2 E:5 N4E =-0,320000E+02

*GO
N:0 E:0 N4E IS NOT DEFINED.

*GO
N:9 E:-3 N4E =+0,1371TLE-02

*Go
N:23 E:23 N4E =+0.208805E+32

*

Note that the program shown does not contain provisions for rejecting fractional values of E. Classroom

experience with this assignment has indicated that this is a challenging problem for the suggested group

of students. The most common student error is that of omitting the exception 0 1 0,

D. Plotting Equalities and Inequalities on the Number Line

This program is an excellent demonstration device as well as a challenging assignment for

better students studying first year algebra. Any equality or inequality can be plotted on the number

line over the interval =8 through +8. This choice of limits is quite crbitrary, and the program can

. easily be modified to accommodate any other limits desired. The basic program appears as:

16

#1.10 TYPE 1"USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:*!!' *
B1.20 FOR N=-8,.25,83 [0 2

P1.30 TYPE !"-8 =7 =6 =353 -4 =3 -
B1.40 TYPE " 6 7 g1ty QUIT

-1 @8 1 2 3 4 5"

n

P2.90 TYPE "«"3 CONTINUE

©3.90 TYPE “X'3 CONTINUE

*D0 1
USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

-8 =7 -6 =% =4 -3 -2 -1 (5] 1 2 3 4 5 6 7 8

Only the number line was typed out because no other conditions were specified. The specific equality
or inequality to be plotted must be described using any of the step numbers 2.01 through 2.89 and the
IF command. This command should transfer to step 2.9 for a point that is NOT to be plotted and to
step 3.9 for a point that is to be plotted. Suppose we wish to plot all N < 0. The instruction needed

is

2.1 IF(N)3.9, 3.9, 2.9

point IS included int NOT included
if<0. if>0.

A sample run is:

*201 IF (N) 3.9’ 309’ 2.9
*D0 1

USING YOUR CONDITIONSs THE NUMBER LINE APPEARS AS:

P 9.9.9.9.8.9.4.9.9.9.99 9999980989990t TR TR E YRR TN TR NN
-§ -7 -6 -5 -4 -3 -2 -1 %) 1 2 3 4 S 6 7 8

10

17.

One can also indicate the inclusion or exclusion of a terminating point on the graph. The previous

example plotted N £ 0, while this example plots N < 0. Note that 0 is not included in this case.

*2¢1 IF (N) 3.9 2.9, 2.9
*DO 1

USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

XXXXXKKKXXKXXXXKRX XXX KX K AR KKKKKK e s ee0ceessssssssssscsessccsosssnaa
-8 ~7 -6 =~5 =4 =3 =2 =1 0 1 2 3 4 S 6 7 8

*
Expressions involving absolute value can also be plotted. For example, l Nl = 3 appears as:

2.1 IF (FABS(N)Y=3) 2.9, 3.9 2.9
*D0 1

USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

oooooooooooooooooooox.oooooooooooooooooooooox.ooooo000.000.000000

~§ =7 =6 =5 =4 =3 =2 =1 0 1 2 3 4 S 6 7 8

9

The program can be used to plot inequalities according to student instructions, or to rapidly
give inequalities which students must identify. By preparing a tape containing instructions for several
different conditions, a wide variety of examples could be presented using only a small amount of class

time.

The same program can also plot more complicated conditions such as N < =4 or N > 2, The
needed instructions are:

plot if N>2
2.1 IF(N-2), 2.2, 2.2,,3.9

2nd condition must be checked if N<2

2.2 IF (N+4) 3.9, 3.9,, 2.9
plot if Ng-4 point rejected since N>-4 AND N<2
0 .

18-

A run of the program including these instructions, appears as:

*¥2,1 IF (N-2) 2.2, 242, 3.9
*202 IF (N"A) 309) 309) 209
*PO 1

USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

KXXXXKAXXKKXXX XX Ko oo oss000ss0ss0os0sooses XXXXXXXXXXXXXXKXXXXXXXXX
~§ =7 =6 =5 -4 =3 -2 -1 {5/ 1 2 3 4 5 [1 8

By working with several examples similar to this one, the students receive an introduction

to logical AND/OR statements. The following graph represents the condition 2< N < 4 (i.e., a pro~
gram using AND),

*¥2.1 IF (N-2) 2.9, 2.9, 2.2
*2,2 IF (N-4) 3.9, 3.9, 2.9
*DO |

USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

oooXXXXXXXXooooooooooooozao
-8 -1

=6 =5 =4 -3 -2 -1 0 1 2 3 4 5) 7 8

When students are convinced that they understand this topic, the following two examples will

check their confidence,

QO

ERIC

Aruitoxt provided by Eic:

*2,1 IF (N=2) 3.9, 2.2, 2.2
*2.2 IF (N+4) 2.9, 3.9, 3.9
*DO 1

*2, 1 IF (N=2) 202) 209) 209
#2.2 IF (N~4) 2.9, 3.1, 3.1 } represents 2>N >4
*DO 1

USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS?

-8 -7 -6 =5 =-4 -3 -2 -l 0 1 2 3 4 5) 7 8

} represents N<2 or N>-4

USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

XXXXXXXXKXXXRXXXXXXXXKXRXXKXAXX XXX XXX XX XX KX XX XKXXX XXX XX XXX X XXX XX XXX K
-8 -7 -6 =5 -4 -3 -2 -} 14 1 2 3 4) 6 7

8

N, v

A4

E. Sets (Union, Intersection, and Subsets)

Determining an expression to represent the number of subsets of a given set containing N
:’ elements is a good individual or class project. Students might be led to discovering the expression 2N

by using the following program:

P1.M1 TYPE 'HOW MANY ELEMENTS IN YOUR SET? '3 ASK N
01.02 TYPE 'THAT SET HAS > 719.8, 2tN, ' SUBSETS.',!!
*

% GO

HOW MANY ELEMENTS IN YOUK SET? :23

THAT SET HAS =+ 8388610 SUBSETS.
* GO

HOW MANY ELEMENTS IN YOUk SET? :63
THAT SET HAS =+9223370000000000N00 SUBSETS.

*

NOTE

263 is the largest number acceptable in the indicated
format.

g’ Another program which can be used for demonstration when presenting the topic of subsets

is the following which lists all subsets of a given set.

@1.81 C PROGRAM WHICH WILL LIST ALL SUBSETS OF A GIVEN SET
01.@2 TYPE "THIS PROGKAM WILL LIST ALL SUBSETS OF A GIVEN SET",!
@1.03 TYPE "OF NUMBERS. HOW MANY ELEMENTS ARE IN YOUK SET? "
Al.84 ASK N

@1.05 TYPE "NOW TYPE EACH OF THE ELEMENTS.',!

@1.66 FOR I=1,N3 ASK E{I]

®1.67 TYPE !»'"THE SUBSETS ARE:", !, "NULL SET",!, %4.1

01.08 FOK 1=1,N3 SET PLI]=@

01.09 FOR C=1,2tN-13 DO 2

82.01 FOR I=1,N3 IF (1-PL11) 2.082, 2.023 SET J=13 SET 1=N
P2.02 CONTINUE

@2.03 FOR I=1,J3 SET PLIJ)=FABS(PLI]-1)

02.04 FOR I1=1,N3 IF (PLI1=~1) 2,853 TYPE ECIi," "

02.05 CONTINUE

02.06 TYPE !

13

ERIC

A sample run of this program is:

*DO .
THIS PROGRAM WILL LIST ALL SUBSETS OF A GIVEN SET '
OF NUMBERS. HOVW MANY ELEMENTS ARE IN YOUR SET? :3 -
NOVW TYPE EACH OF THE ELEMENTS.

HB |

12

+ 3

THE SUBSETS ARE:

NULL SET

=+ 1

=+ 2

=+ 1 =+ 2

=+ 3

=+ 1 =+ 3

=4 2 =4 3

=+ 1 =+ 2 =+ 3
*

The writing of this program is a difficult assignment for most students, but a class discussion
of the algorithm used has several bene\ 'ts. The program constructs an N-digit binary counter (N is
the number of elements in the set), cssocmtes each element of the set with the digit position in the

binary counter, and then types out each element of the set when its corresponding binary position has

7/

a value of 1. In the previous sample run the program set up the three-digit binary counter:

2 3 elements of set binary positions
X

1
X X

The typeout then followed the pattern:

BINARY COUNTER TYPE OUT

0 0 O NULL SET

1 0 o0 1

‘0 1 o0 2

1 1 0 1 2

0 0 1 3

1 0 1 1 3 '
0 1 2 3

S 1 2 3

Note that the positons of the binary counter must be considered rather then the base 10

representation of the binary number.

14

21 -

foy

0

O

ERIC

Aruitoxt provided by Eic:

An unexpectedly challenging student exercise is the writing of a program which tells whether

or not two given sets are equal. One student's solution to this problem is:

B1.01 TYPE °*"THIS PROGRAM WILL TELL WHETHER OR NOT TWO SETS ARE EQUAL."
B1.02 TYPE !"HOW MAMY ELEMENTS ARE IN EACH OF YOUR SETS? '; ASK N
81423 IF (N) 14025 14025 IF (FITRI(NY-N) 1.082, 1.04, l.02

P1.04 TYPE !"THE ELEMENTS OF YOUR ST SET ARE?*'!5; FOR I=1,N3; ASK A[LI)
P1. 35 TYPE !"THE ELEMENTS OF YOUR 2ND SET ARE?*!5; FCix I=1,N; ASK BLI.J
B1.06 FOR G8=1,N3 DO 2

A1.07 TYPE !'"THE SETS ARE EQUAL.'!!; QUIT

P2.01 FOR J=03 FOR I=GsN;3; IF (A[QJI-BLIl) 2.03, 2.82, 2.03
@2.02 SET 5=BLQ1; SET BL@l=BLI); SET BLll=S; SET J=1; SET l=N
02.03 CONTINUE

N2.04 IF (-J 2.053 TYPE !"THE SETS ARE NOT EQUAL.''!!5; QUIT
P2.05 CONTINUE

Two runs of this progrom are:

*DO 1
THIS PROGRAM WILL TELL WHETHER OR NOT TWO SETS ARE EQUAL.
HOW MANY ELEMENTS ARE IN EACH OF YOUR SETS? :3

THE ELEMENTS OF YQUR 1ST SET ARE?
t2
:3
sl

THE ELEMENTS OF YOUR 2ND SET ARE?
:3

THE SETS ARE EQUAL.

%

*DO 1

TH1S PROGRAM WILL TELL WHETHER OR NOT TWKD SETS AKE EGQUAL.
HOW MANY ELEMENTS ARE IN EACH OF YOUR SETS? :2

THE ELEMENTS OF YOUR IST SET ARE?

e

THE ELEMENTS OF YOUK 2ND SET ARE?

o

THE SETS ARE NOT EQUAL.

*

15

22

Note that step 1.03 of this program is used to reject improper values for N and is not a necessary step
in the solution. When this problem is assigned to a class, many different, yet correct, algorithms
usuaily result. If time permits, a class discussion of several different solutions is @ good introduction to
the concepts of searching and coraparing two files.

The intersection and union of two sets can be demonstrated using the following program. This
problem is a good programming exercise for students familiar wirh programming techniques, but is best
used as a demonstration program when this topic is being introduced to more elementary students, Note
that the program will correctly handle the case when one or both sets are empty, but will not work

when one of the sets contains two or more identical elements. The program is:

91.91 ERASE

@1.02 TYPEZ '"PROGRAM TO FIND THE UNION AND LNTERSECTION OF THHO SETS."
©1.63 TYPE !!1'HOW MANY ELEMENTS IN SET A? "5 ASK N

D1.04 IF (N) 1:065 1.065 1.0%

21.85 TYPE "THESE ARE?"!3 FOR I=1,Ns ASK A[I1

@1.06 TYPE !'"HOW MANY ELEMENTS IN SET B? "3 ASK M

P1.07 IF (M) 1.09, 1.09, 1.28

P1.88 TYPE “THESE ARE?'"!3 FOR I=1,M3 ASK B[]

D1.89 IF (M+N) 4.P2, 4023 TYPE !"THE UNION CONTA!NS:'!
Pl.12 SET I=13 IF (N) 1.115 1.115 FOR I=1,N3 SET UC13=ACI]
B1.11 IF (M) 1412, 1.125 FOR J=1,M3 SET MT=0; DO 2

Pl1.12 FOR J=is1-15 TYPE UCJI,!

P1.13 TYPE !"THE INTERSECTION CONTAINS:'!

Pl1.14 SET T=@3 FOR I=1,N;3 FOR J=1,M3 DO 3

P1415 IF ¢(=T) 1.163 TYPE '"NO ELEMENTS'"!!; QUIT

P1.16 FOR 1=15T; TYPE INCI,!

P1.17 QUIT

092.02 FOR K=1,N3 IF (B(J1-A(K]) 2.84, 2.83, 2.04
02.083 SET MT=-13 SET K=N

02.04 CONTINUE

P2.05 IF (MT) 2.063 SET UCI11=B(J1s SET I=I+1
P2.06 CONTINUE

03.02 IF (ACI11-BLJ]) 3.04> 3.03, 3.04
03.83 SET T=T+13 SET INCTI1=A(I13 SET J=M
P3.04 CONTINUE

04,02 TYPE !"UNION AND INTERSECTION ARE EMPTY.'"!!

Within this program, part 2 is used to determine the union of the sets ond port 3 determines the inter-
section of the sets. Steps 1.02 through 1.08 ore used to obtain the elements of the two sets to be

compared. Three runs of this program are:

16

O

ERIC 23

Aruitoxt provided by Eic:

*D0 1
PROGRAM TO FIND THE UNION AND INTERSECTION OF TWO SETS.

HOW MANY ELEMENTS IN SET A? :0

K4

Jovns)

HOW MANY ELEMENTS IN SET B? 10

A\l

UNION AND INTERSECTION ARE EMPTY.

*

*DO 1
PROGRAM TO FIND THE UNION AND INTERSECTION OF TWO SETS.

HOW MANY ELEMENTS IN SET A? :3
THESE ARE?
- HES)
16
2

HOW MANY ELEMENTS IN SET B? :4
THESE ARE?

H]

t4

:2

:5

THE UNION CONTAINS:
=+
=4
=4
=+

THE INTERSECTION CONTAINS:

ARMNMOWL

=+ S
=+ 2
*

«DO 1

PROGRAM TO FIND THE UNION AND INTERSECTION OF TWO SETS.
HOW MANY ELEMENTS IN SET A? :0

HOW MANY ELEMENTS IN SET B? :3
THESE ARE?
L |

THE UNION CONTAINS:

=+ 1
=% 2
=+ 3

THE INTERSECTION CONTAINS:
NO ELEMENTS

*

17

O

ERIC 24

Many students will enjoy writing programs which simply list the elements of a set whose
definition is given. For example; assuming the Universal Set to be the positive integers 1 through 99,

the following student program lists the set whose elements are divisible by 16 ond end in 2 or 0, -,

01.10 IF (FITR(N/16)=N/16) 1.9, 1.2, 1.95 C DIVISIBLE BY 16?
01.20 IF (N=10*FITR(N/10)) 1.3, 185, 1.33 C IS LAST DIGIT 0?
0130 IF (N=10%FITR(N/10)>=-22 1.9, 1.8, 193 C IS LAST DIGIT 22
01.80 TYPE N»'!

01.9% CONTINUE

* The Universal Set being considered is

determined by this FOR command.

*FOR N=1,993 DO 1

=4 32

=+ 80 .
*

By writing programs such as this, students reinforce their knowledge of logical AND/OR
statements. They also begin to appreciate the value of considering all cases when correct but un=-
expected elements appear in their result. This type of assignment is also easily individualized, as the
set definition can be made as complicated as desired for each student. As a final example, consider the
following program which lists the set of two=digit positive integers (a leading zero is assumed) in which
one digit is divisible by the other OR vice versa. Note that the student must eliminate the possibility
of trying to divide by zero. The program is:

p—g

$1.10 SET T=FITR(N/10)35 SET U=N-10%T3 C FIND TENS AND UNITS DIGITS -
<1620 IF C(U) 13, 133 IF (FITR(T/U)=T/U) 135 148, 1.3

01.30 IF (T) 1.9, 1.93 IF (FITR(U/TI=U’/T) 1.9 185 149

21.80 TYPE N, !

01.90 CONTINUE
*

*FOR N=1,993 DO 1

=4 1

=4 2

= 3

=4 4

=+ S -
=4 6

=4 7

=4 8

=+ 9 °
=+ 10

=+ 11

=4 12

=+ 13

=+ 14

=+ 15

=4 16

=+ 17

18
O

ERIC

25

=+ 19
=+ 20
=4 21
=+ 22
=+ 24
=+ 26
=+ 28
=+ 30
=+ at
= 33
=+ 36
= 39
= a0
=+ 4]
=+ 42
=+ 44
=+ 48
=4 S0
= 51
=4 95
=+ 60
=+ 61
=+ 62
=+ &3
=+ 66
=+ 70
=+ 71
=+ 17
=+ 80
=+ 81
=+ g2
=+ 84
= 88
=+ 90
= 91
=4 93
=+ 99
*
F. Numbers in Other Bases (Supplementary)

A program to convert integers from base N to base 10 is useful for both demonstrations and
student assignments. Equally useful, but decidedly more challenging, is a program to convert any num=-
ber from base N to base 10. The following flow chart represents an algorithm for the first of these
problems.

19

26

OBTAIN NUMBER
AND 1TS BASE

DOES
NUMBER \
CONTAIN, MORE
AN gDﬁlT

TYPE
ERROR MESSAGE

6 DIGIT LN IS
NUMBER OF SIGNIFICANT
WGITS IN FOCAL

A POSITIVE
INT E70ER

TYPE
ERROR MESSAGE

.

aop D#103-1 1O
BASE 10
NUMBER) /

[——————

——— —— e o

TYPE BASE
10 NUMBER

The program appears as:

01.01 TYPE "THIS PROGRAM CONVERTS INTEGERS (UP TO 6 DIGITS) FROM'"!3;ERASE
01.02 TYPE "BASE N TO BASE 1@.*!5 ASK ?NUMBER?» ?BASE?

01.03 IF (FABS(NU>-999999) 1.04,1.843 TYPE !"NO MORE THAN 6 DIGITS"!3QUIT
0l1.04 IF (BA) 2.03, 2.0312 IF (FITRC(BAY-BA) 2.03, 1.05, 2.03

01.85 SET A=03 SET S=FSGN(NU)3 SET NU=FABS(NU)3 FOR I=0,53 DO 2

01.06 TYPE “NUMBER IN BASE 10 IS ", 28.0, S*A,!!!3 QUIT '

02.01 SET D=FITR(NU/1@v(5-1>)3 SET NU=NU-D*10t(5-1)
02.02 IF (D-BA) 2.04, 2.083, 2.03

02.03 TYPE !'"YOU'VE USED AN IMPROPER BASE."!3 QUIT
02.04 SET A=A+D*BA*(5-1)

Note that steps 1.03, 1.04, 2.02, and 2.03 are all used to eliminate incorrect values of number and
base. When using this problem as an assignment fot students, the program is much simpler if these

checks or input numbers are not required. Several runs of this program are:

J/

27

bg

*DO 1

TH1IS PROGRAM CONVERTS INTEGERS (UP TO 6 DIGITS) FROM
BASE N TO BASE 10.

NUMBER: 1101

BASE: 2

NUMBER IN BASE 10 1S =+ 13

*DO 1

THIS PROGRAM CONVERTS INTEGERS (UP TO 6 DIGITS) FROM
BASE N TO BASE 10.

NUMBER? 4321

BASE: 7

NUMBER IN BASE 10 [S =+ 1534

*DO 1

THIS PROGRAM CONVERTS INTEGERS (UP TO 6 DIGITS) FROM
BASE N TO BASE 10.

NUMBER: 1234

BASE: 3

YOU'VE USED AN IMPROPER BASE.
*

A program to convert an integer from base 10 to base N is quite similar to the previous

éxample in both usefulness and form. The amount of class time required for the two problems can be

reduced by discussing one program in class, then assigning the other as homework. A student written

e

01.01
0l1.02
21.03
O1.04
0105
21.06
21.07
21.08
21.09

22.01
*

program for converting integers from base 10 to base N is:

TYPE "THIS PKROGRAM CONVERTS AN INTEGER FROM BASE 10 "3 ERASE
TYPE "TO BASE N«'!3 ASK ?NUMBER?, ?BASE?,!

SET SN=FSGN(NU)Y3 SET NU=FABS(NU)

IF (BA-2) 1,053 IF (10-BA) 1.065 1F (FITRC(BAY=BA) 148551075105
TYPE "“THAT 1S NOT A VALID BASE."!!3 QUIT

TYPE "PROGRAM CAN ONLY HANDLE BASES LESS THAN 11'!13QUIT

IF (NU-BA*6) 1.083 TYPE "NUMBER TOO LARGE FOR PROGRAM'!!3; QUIT
FOR 1=0,53 DO 2

TYPE %8.0,"THE NUMBER IN BASE", ‘BA, * 15", Tu=SN»!!3 QUIT

SET X=FITR(NU/BA*(5-1))3 SET NU=NU~X*BAt(5-1)3 SET T=T+X*101(5~1)

Note that steps 1.04 through 1.07 are all used to eliminate incorrect values of number and base. Since

these steps are not a part of the actual base-changing algorithm, their inclusion might be an optional

or extra=credit part of an assignment. Several runs of this program are:

ERIC

Aruitoxt provided by Eic:

21

28

O

ERIC

Aruitoxt provided by Eic:

*DO 1

THIS PROGRAM CONVERTS AN INTEGER FROM BASE
NUMBER: 123 BASE: 2

NUMBER TOO LARGE FOR PROGRAM

*DO |

THIS PROGRAM CONVERTS AN INTEGErR FROM BASE
NUMBER: 4321 BASE:8

THE NUMBER IN BASE=+ 8 1S=+ 12341

*DO 1

THIS PROGRAM CONVERTS AN INTEGER FkOM BASE
NUMBER: 12 BASE:-3

THAT IS NOT A VALID BASE.

*DO 1

THIS PROGRAM CONVERTS AN INTEGER FROM BASE
NUMBER: =234 BASE:5S

THE NUMBEK IN BASE=+ 5 IS=- 1414

*

22

29

19 T0

18 TO

10 TO

18 TO

BASE

BASE

BASE

BASE

Il. SOLVING (BY SUBSTITUTION) EQUATIONS AND INEQUALITIES IN ONE VARIABLE

’ A, Solving Equations

1 .
Students are often introduced to the concept of solving equations on an intuitive basis. The

programs in this section are designed to complement this approach as well as to assist students in develop-
ing their ability to guess approximate roots. All of the programs are svitable for demonstration or stu-~
dent assignments. Since there is little programming skill invelved in most of the examples shown, the
problems are good exercises for students who are still becoming familiar with the computer.

The first program allows the user to check the solution to any equation. Note that the left
and right sides of the equation are entered independenily - the students do not have to be able to put

all terms on one side of the equation in order to write or use the program. The program appears as:

@1.21 C PROGRAM TO CHECK THE SOLUTION TO AN EQUATION BY SUBSTITUTING
01.02 C ANY GIVEN VALUE INTO THE EQUATION. TO USE THE PROGRAM, USE
@1.03 C PART 2 TO SET L = TO LEFT SIDE OF EQUATION AND R = RIGHT SIDE
@1.04 C OF EQUATION. YOU MUST USE X AS THE VARIABLE IN PART 2.
@1.05 ASK "YOUR SOLUTION IS X='", X3 DO 2

@1.06 IF (L-R) 1.08, 1.07» 1.08

@1.07 TYPE "THAT VALUE IS CORRECT!!"!!3 QUIT

@!.08 TYPE '"THAT VALUE 1S NOT CORRECT!!'"!!3 GOTO !.05
*

Two runs of the program, first with -3x = 9, then 4x -5=.2x+7, are

$=9

*2+1 SET L=-3%X

*¥2.2 SET R=9

*D0 1

YOUR SOLUTION IS X=:-3
THAT VALUE IS CORRECT!!

*2.1 SET L=4%X-5
*2.2 SET R=2kX#+7

*DO ! M

YOUR SOLUTION IS X=3=6
THAT VALUE IS NOT CORRECT!!

. . YOUR SOLUTION IS X=:6
THAT VALUE rS CORRECT!!

*

Although both examples had integral solutions, the program will work for any solution expressible in
six significant digits.
The next program is simply an extension of the last one. Instead of just labeling the user's value

of x as correct or incorrect, the program types out the value of each side of the equation when an in-
0

O

ERIC 30

Aruitoxt provided by Eic:

23

correct solution is given. Since this program is almost identical to the previous one (steps 1.09 and
1.10 have been added and step 1.08 changed), a good teaching sequence is to use the first program for

demonstraiion and the following as a student assignment.

B1.01 C PROGRAM TO CHECK THE SOLUTION TO AN EQUATION BY SUBSTITUTING
@1.02 C ANY GIVEN VALUE INTO THE EQUATION. TO USE THE PROGRAM, USE
01.03 C PART 2 TO SET L = TO LEFT SIDE OF EQUATION AND R = RIGHT SIDE
01.04 C OF EQUATION. YOU MUST USE X AS THE VARIABLE IN PART 2.
¥1.85 ASK 'YOUR SOLUTION IS X='*, X3 DO 2

B1.06 IF (L-R)> 1+08, 1.07» 1.08

01.07 TYPE "THAT VALUE IS CORRECT!!'"!!3; QUIT

01.08 TYPE "THAT VALUE IS NOT CORRECT!!"!"USING THAT VALUE OF X, '
P1.09 TYPE '"YOU HAVE:"!"LEFT SIDE UF EQUATION ',%8.04,L

@1.10 TYPE !'"RIGHT SIDE OF EQUATION '",R,!!3 GOTO 105

*

Runs of this program using the equations ~3x = 9 and 4x-5= 2x+7 are:

*2+1 SET L=-3%X

*2.,2 SET R=9

*DO 1

YOUR SOLUTION IS X=:-3
THAT VALUE 1S CORRECT!!

2.1 SET L=4%X-5

*2¢2 SET R=2%X+7

*DO 1

YOUR SOLUTION 1S X=:-6

THAT VALUE 1S NOT CORRECT!!

USING THAT VALUE OF X» YOU HAVE:
LEFT SIDE OF EQUATION =- 29,0000
RIGHT SIDE OF EQUATION == S5.0000

YOUR SOLUTION IS X=:6
THAT VALUE IS CORRECT!!

*

Student interest will quickly turn to writing a program which will solve an equation raf.her
then merely confirm the user's solution. This can be done at an introductory stage of equation solving
by writing a program which will search a given interval for a possible solution. Doing this provides an
excellent introduction to simple searching techniques and, more important, helps students develop the
ability to find an approximate interval in which a solution lies.

~ The following program accepts equations in the same form as the previous two examples,
asks for the interval (from A to B) to be searched, and then types all integral solutions in that interval.

24
ERIC A.

9

i

A

>

O

ERIC

Aruitoxt provided by Eic:

The program assumes that A < B and that A and B are both integers, but these restrictions can easily be

removed. The restriction that only integral solutions can be found is dictated by the incrementing of

x in step 1.09, thus this restriction can also be easily removed. The programis:

B1.01

N1.02
D1.03
D1.04
21.05
Al1e06
B1.07
21.08
01.09
*

C PROGRAM TO SEARCH FOR THE INTEGRAL SOLUTION TO AN EGUATION

C OVER A GIVEN INTERVAL. TO USE THE PROGRAM» USE PART 2 TO

C SET L = LEFT SIDE OF EQUATION AND R = RIGHT SIDE OF EQUATION.
C YOU MUST USE X AS THE VARIABLE IN PART 2. THE PROGRAM WILL
C ASK FOR THE INTERVAL YOU WISH TO SEARCH.

ASK '"SEARCH INTERVAL FROM '"»A, "™ TO ",Bs!3; SET X=A

DO 23 IF (L-R) 1409, 1.28, 1+09

TYPE '"A SOLUTION IS " 76.0s X,!

SET X=X+13 IF (X-B) 1.07, 1.0873 QUIT

Two runs of the program are:

*2¢1 SET L=4%X-5
*2.2 SET R=2%X+7

*DO 1

SEARCH INTERVAL FROM @ TO :10
A SOLUTION IS =+ 6

*

2e¢ 1 HET L=X%(X~1)
*2.2 SET R=2

*D0 1

SEARCH INTERVAL FROM 5 TO 15« note that no solution

*D0 1 was found in this interval,
SEARCH INTERVAL FROM :=-10 TO :5

A SOLUTION IS =- 1

A SOLUTION IS =+ 2

*

The writing of this program, or the rewriting of the program to eliminate the restrictions on

A,B, and the nature of the solution, are both good student exercises. Better students might be assigned

the task of writing a program which would type out the value of x which comes closest to making both

sides of the equation equal when the exact solution is not found.

Bl

Solving Inequalities

Introductory programs for solving inequalities by substitution are quite similar to the three

previous examples used for solving equaticns. The following program allows the user to confirm a solu-

tion to any inequality. The input form is exactly as in the second equality program, with the added

25

32

necessity of entering the appropriate inequality sign (GR for >, GE for >=, LE for <=, or LS for <).
Note that FOCAL automatically assigns the values GR= 72, GE = 7, LE = 12, and LS = 123 when these

characters are typed in response to an ASK command. The program is:

PROGRAM 'O CHECK A SOLUTION TO AN INEQUALITY BY SUBSTITUTING
ANY GIVEN VALUE INTO THE INEQUALITYe. TO USE THE PROGRAM, USE
PART 2 TO SET L = LEFT SIDE OF INEQUALITY AND R = RIGHT SIDE
OF INEGUALITY. X MUST BE USED AS THE VARIABLE IN PART 2.
B1.05 WHEN PROGRAM ASKS FOR "INEQ", TYPE GKs GE» LEs OR LS

01.06 TO INDICATE THE SENSE OF YOUR INEGUALITY.

P1.07 ASK ?INEG?

A1.08 ASK "A SOLUTION IS X=",X3 DO 2

01.09 IF ¢7=-IN) 141835 IF CL-R) 1.145 1.135, 1.13

G110 IF C12-IN) 14113 IF CL=-R) 1413, 1413, 1.14

@1+11 IF (72~IN) 1.125 IF C(L-R) 1e145 }al4s 1.13

Plel12 IF (L-R) 14135 1elds 1el4

P1.13 TYPE "THAT VALUE IS CORRECT!!"!'!; QUIT

@1.14 TYPE "THAT VALUE IS NOT CORRECT.'!"USING THAT VALUE OF X,
1. 15 TYPE "YOU HAVE:"!"LEFT SIDE OF INEQUALITY ",%8.084,L

#1.16 TYPE !"RIGHT SIDE QF INEQUALITY *",R,!!: GOTO 1.08

*

B1.01
01.02
01.03
D1.04

oNoNoReoNoNe]

Two runs of this program are:

*¥2.1 SET L=2%X+3
*2.2 SET R=X-1

*DO 1 Input: 2x + 3<x =1
INEQ:LS

A SOLUTION IS X=t

THAT VALUE IS NOT CORKECT.

USING THAT VALUE OF X, YOU HAVE:
LEFT SIDE OF INEQUALITY =+ 11.0000
RIGHT SIDE OF INEGUALITY =+ 3.0000

A SOLUTION IS X=:-4

THAT VALUE IS NOT CORRECT.

USING THAT VALUE OF X, YOU HAVE:
LEFT SIDE OF INEQUALITY =- 5.0000
RIGHT SIDE OF INEQUALITY =- 5. 0000

.A SOLUTION IS X=:-5
THAT VALUE 1S CORRECT!!

*

133@: GE -«S——Note that the inequality is
A SOLUTION IS x=:@ changedto: 2x+3>x-1
THAT VALUE 1S CORRECT!!

-

25

ERIC 33

Aruitoxt provided by Eic: 3.

A final example considers the inequality | x] < 3:

*2.1 SET L=FABS(X)

*2.2 SET R=3

*D0 1

INEO:LS

A SOLUTION IS X=:-4

THAT VALUE IS NOT COKRECT.

USING THAT VALUE OF X, YOU HAVE:

LEFT SIDE OF INEQUALITY =+
RIGHT SIDE OF INEQUALITY =+

A SOLUTION IS X=:
THAT VALUE IS CORRECT!!

. *

A similar program that searches o given interval for integral solutions to an inequality is:

21.01 C PROGRAM TO SEARCH FOR THE INTEGRAL SOLUTIONS TO AN INEQUALITY
01.02 C OVER A GIVEN INTERVAL. TO USE THE PROGRAMs USE PART 2 TO
1.3 C SET L = LEFT SIDE OF INEQUALITY AND R = RIGHT SIDE OF

Wi1.04 C INEOQUALITY. YOU MUST USE X AS THE VARIABLE IN

®1.05 C THE PROGRAM WILL ASK FOR THE INTERVAL YOU WISH TO SLEARCH.
01.96 C WHEN PROGRAM ASKS FOR '"INEG's TYPE GRs GE»

®1.07 C INDICATE THE SENSE OF YOUR INEQUALITY.

01.08 ASK ?INEQ?, !""SEARCH INTERVAL FROM ",As " TO

B1.09 TYPE "INTEGRAL SOLUTIONS IN THAT INTERVAL ARE:'!
PN 01.10 DO 25 IF (7-IN) 1.113 IF C(L=R) 1.155 1.145 1.14

{ 01.11 IF C12-IN) 1.125 IF (L-R) 1.14s 1.145 1.15
— B1.12 IF (72-IN) 1.135 IF (L-R) 1.155 1.155 1.14
M1.13 IF (L-R) 1.14, 1.15s 1-]5
@l.14 TYPE %6.0s X, !
@1.15 SET X=X+13 IF (X-B) 1.105 1.105 QUIT
%

Three runs of this program are:

*2e1 SET L=2#%X+3
*#2.2 SET Ke=X-1 2x+3<x=1
*DO 1 -

INEQ:LE

SEARCH INTERVAL FROM :6 TO 210

INTEGRAL SOLUTIONS IN THAT INTERVAL ARE:

%
“€———No solutions found in this interval .

ERIC 34

*D0O 1

INEQ:LE

SEARCH INTERVAL FROM :=-106 710 :0
INTEGRAL SOLUTIONS IN THAT INTERVAL ARE:
== 10

)
DU IR0

* 00D wnpn
]

*¥2+1 SET L=FABS(X)

*¥2e2 SET R=3 .

£D0 1 Inequality changed to |x] <3
INEQ:LE -

SEARCH INTERVAL FROM :-15 TO :15
INTEGRAL SOLUTIONS IN THAT INTERVAL ARE:

=- 3
S- 2
=~ 1
=+ (4]
=+ 1
=+ 2
=+ 3
E 3

and finally to' x|>3

*DO 1 /

! INEW: GR
SEARCH INTERVAL FROM :-8 TO :8
INTEGRAL SOLUTIONS IN THAT INTERVAL ARE:

+ + +

+ +
MBS N N B NI N e RN e]

#0400 0w onn

Note that in the praceding two programs no provisions were made to prevent the input of incorrect data.
If the interval given doe; not begin with an integer or the interval begins with a larger number than it

ends with, the programs will appear to run, but they will not perform the expected search.

ERIC

35

C. Words To Algebraic Expressions

Introducing students to the techniques of converting a series of words to a mathematical

EAS

i equation or expression is probably best done without utilizing the computer. The computer will have
o previously helped clarify the meaning of a variable, but the actual process of translating a phrase like:
“"Express the cost of 12 apples and 6 oranges if 3 apples cost x cents and the oranges are five times as
expensive as apples” into the expression COST = 4x + 5(2x) is well introduced without involving the
computer. However, the computer can be used to reinforce the learning of this concept in either a
. drill or @ "testing" situation. For example, consider the following problems:

1. At the shallow end of a swimming pool, there are 5 steps (each i inches high) leadiig
out of the water. Express the depth of the water in feet.

2. This year Bill eamed $400 doing odd jobs. This was an increase of q dollars over his
earnings of last year. Express his earnings for last year.

3. A picture frame is 6 inches longer than twice its width (w). Express the length of the
frame in inches.

4, Express a number which is 17 less than 3 times a given number N.

5. Tomatoes cost 28¢ per pound more than potatoes. If potatoes cost p cents per pound,
express the cost of 5 pounds of potatoes and 2 pounds of tomatoes.

6. Carol is 3 years older than twice Alice's age. If Alice is x years old, express Carol's
age.

By having students prepare punched tapes containing their answers in the form

7™ 2.1 SET Al =5*/12
2.2 SET A2 = 400-q

i

-l

2.6 SET A6 = 2%X+3
DO 1

the following program can be used to check their work

01.10 SET I=60; SET Q=190; SET W=30; SET N=8
0l1.11 SET P=,15; SET X=11,5

01,20 DO 2

01.30 SET S1=25; SET S2=210; SET S3=36; SET Skha7
01.31 SET S5=1.61; SET S6=26

01.40 TYPE "YOU WERE CORRECT ON PROBLEMS-
0l.41 IF (-FABS(Al1-S1)) 1,42; TYPE " 1"
01,42 IF (-FABS(A2-S2)) 1.43; TYPE " 2"
01.43 IF (-FABS(A3-583)) 1.4k4; TYPE " 3"
01,4k IF (-FABS(AM-SN)) 1,45; TYPE " 4"
01.45 IF (-FABS(A5-55)) 1,46; TYPE " 5"
01,46 IF (-FABS(A6-56)) 1,603 TiFE " &"
01.60 TYPE 11; ERASE

01.70 ERASE 2

01,80 QUIT

#

29

36

Two different student responses are:

#2,1 SET Al=5%I/12

#2.2 SET A2=400-Q

#2 3 SET A3=W+6

%2, 4 SET Ab=3%N-17

#2.5 SET A5=2%(,28+P)+5%p

%#2,6, SET A6=2%#X+3

*D0O 1

YOU WERE CORRECT ON PROBLEMS: 1 2 3 4 5 6
con .

and

#2,1 SET Al=5%1#%12

*2,2 SET A2=400-q

#2 3 SET A3=W+6

#2 L4 SET Ab=3%N+17

#2,5 SET A5=2%(284P)+5%P

#2 6 SET A6=2%X+3

*Do 1

YOU WERE CORRECT ON PROBLEMS: 2 3 6

NOTE
This program is similar in purpose to that shown on page 4.

The program verifies the student answers by substituting a value {assigned in steps 1,10 and 1.11)
into the student's expressions and comparing theirresults (determined by DCing 2) with the correct re~
sults (assigned in steps 1.30 and 1.31). Thus to utilize this program with a different set of six problems,
one need only change steps 1.10, 1,11, 1,30, and 1.31. If the number of problems is to be changed,
the sequence of sieps 1.41 through 1,46 can be increased or decreased as necessary. The only restric-
tion placed on problems to be checked with this program is that no problem should be used for which
zero is the correct answ , for if a student fails to do a problem the answer variable is assumed to be
zero. \ :

The preceding program is also useful as a drill exercise. This application, however, uses
much more computer time sincé“j‘it is most beneficial if the student does all work on-line rather than
first preparing bunched tapes of,f line, because while on-line he can immediately modify an incorrect
problem. Another program speéifically for drill work could be written which would check one problem
at a time, and in doing so tell v%hether the student's expression would yield a result greater than, less

than, or equal to the desired resd\lt.

30

Y

4

b

O

ERIC

Aruitoxt provided by Eic:

D. Solving (by substitution) Equations and Inequalities in Two Variables (Supplementary)

The following program searches a given interval for solutions to an inequality in two variables.
The operation of this program is identical to that of the second example given in section B of this chapter;
only the input and output forms differ. In this example the program ASKs for both an x and y interval,

and the typeout is in the form cf ordered pairs. The program is:

M1.61 C PROGRAM TO SEARCH FOR THE INTEGRAL SOLUTICNS TO AN INEQUALITY
01,02 C C(WITH TWO VARIABLES) OVER A GIVEN INTERVAL. TO USE THE PROGRAM»
N1.03 C USE STEPS 2.1 AND 2.2 TO SET L = LEFT SIDE OF INEQUALITY AND
Pled4 C R = RIGHT SIDE OF INEQUALITY. YOU MUST USE X AND Y AS THE
A1.05 C VARIABLES IN PART 2. THE PROGRAM4 WILL ASK FOR THE INTERVAL YOU
#1.06 C WISH TO SEARCH. WHEN PROGRAM ASKS FOR "INE®', TYPE GR, GE»

M1.87 C LE>» OR LLS TO INDICATE THE SENSE OF YOUR INEQUALITY.
B1.08 ASK ?INEG?,!"X INTERVAL IS5 FROM '>XS, ' TO ", %F,!

61.09 ASK "Y INTEKVAL IS FROM "»YS, ' TO ",YF,!

P1.10 TYPE "INTEGRAL SOLUTIONS (A,Y) IN THAT INTERVAL ARE:'!
P1.11 FOR X=XS,XF3 FOR Y=YS,YF3; DO 2

P1.12 OUIT

P2+30 1IF (7=-IN) 24313 IF (L=-R) 2.355 234, 2.34
02,31 IF (12=-IN) 2.325 IF (L=R) 2.34, 2.34, 2.35
¥2.32 IF (72=-IN) 2,335 IF (L-R) 2.35, 2.35, 2.34
02,33 IF (L=-R) 2.345 2.35, 2.35

0234 TYPE 7Z3.0» "' X5 '5'", Y, " !

02.35 CONTINUE

*

A run of this program using the inequality x(e+1) 2 y+6 is:

¥2¢1 SET L=Xk(X+1)

*2e2 SET R=Y+6

*DO 1

INEQ: GE

X INTERVAL IS FROM t=4 TO 24

Y INTERVAL IS FROM ¢=2 TO g2

INTEGRAL SOLUTIONS (X»Y) IN THAT INTEKRVAL ARE:

(=- 4y =~ 2)
(== 4y == 1)
== 4, =+ g)
(== 4, =+ 1)
(;_ ;‘: ot g ; The magnitudes of the limits cn the two
(== 3,=- 1) intervals do not have to be the same as
(== 3,=+ @) those used in this example .
(=+ 2,== 2)
(=+ 2y== 1)
(=+ 2,=+ 9
(=+ 3,=z= 2)
(=+ 3J3,=- 1)

31

38

(=+ 3, =+ 0)
(=+ 3,=+ 1))
(=+ 3, =+ 2)
(== by=- 2
(=+ 4y == 1)
(=+ 4y =+ 2)
(=+ 4y, =+ 1)
(=+ 4y =+ 2)
*

Another run of this program, using the inequality x(x*+1) < y+8, is:

*DO 1

INEQ:LE

X INTERVAL IS FROM :=-4 T0 :4

Y INTERVAL IS FROM -2 TO :2

INTEGRAL SOLUTIONS (X,Y) IN THAT INTERVAL ARE:

== 3=+ 0)
(== 3, =+ 1)
(== 3, =+ 2

== 2,=- 2
(== 2=~ 1)
(=~ 2,=+ @)
(=~ 2, =+ 1)

== 2,=+ 2)
(=- 1,==- 2)
(=~ 1, =~ 1)
(== l,=+ 0)
(== 1,=+ 1)
(=~ 1,=+ 2
(=+ Dry=- 2
(=+ Jy== 1)
(=+ (Jp =+ B)
(=+ By,=+ 1)
(=+ Q,=+ 2)
(=+ 1,=- 2
(=+ 1,=~ 1)
(=+ o=+ 0)
(=+ 1,=+ 1)
(=+ 1,=+ 2)
(=+ 2,=+ 0)
(=+ 2, =+ 1)
(=+ 2, =+ 2)
£

32
O

ERIC 39

Aruitoxt provided by Eic:

N,

o~

If students are asked to plot the points that are typed out, they are apt to make several dis-
coveries. In the following graph, the points from the first run (x (x+1) > y+6) are plotted using o's and

the points from the ~econd run (x (x+'|) Sy+6) are p|oﬂ'ed using x's.

Lt
[

Students can approximate the location of the points which satisfy x(x+1) = y+6 by sketching
a curve between the x's and o's. This can be used as a different technique for introducing the graphing
of functions. Graphs which represent equations like y=-1= x +3andy= x3 can be introduced very
early in algebra to help students develop an intuitive feeling for the behavior of these expressions be-
fore a more detailed study of them is made later in the course. Students can also discover approximate
or even exact (as in this example) zeroes of functions by noting where the curve intersects the x~axis.

The exact roots will appear in both of the typeouts if > and £ are used.

E. Number Guessing (Supplementary)

The technique of binary search has several mathematical and programming applications.
This idea can be introduced to students with a wide range of mathematical background by using the

following demonstration program:

01.01 TYPE "I HAVE CHOSEN AN INTEGER O THROUGH 100, TRY TO GUESs"!
01,02 TYPE "MY NUMBER IN AS FEW TRIES AS POSSIBLE."!!, %L,0

01,03 SET COUNT=0; SET N=FITR(FABS(FRAN()*100))

01,04 SET COUNT=COUNT+l; ASK "YOUR GUESS IS ",G

01,05 IF (N-G) 1.,06,1,07; TYPE " TO0O LOW"!; GOTO 1,0L
01.06 TYPE " TOO HIGH"!; GOTO 1,0k
01,07 TYPE " CORRECT IN ", COUNT," GUESSES."!

01,08 IF (3-COUNT) 1.09; TYPE "YOU WERE LUCKY."!1l; QUIT
01,09 IF (T-COUNT) 1,10; TYPE "GOOD JOB,"!!; QUIT

01,10 TYPE "BUT YOU SHOULDN'T NEED MORE THAN T GUESSES."!!
»

33

40

Three runs of this program are:

*DO 1
I HAVE CHOSEN AN INTEGER O THROUGH 1C0. TRY TO GUESS
MY NUMBER IN AS FEW TRIES AS POSSIBLE.

YOUR GUESS IS :78 CORRECT IN =+ 1l GUESSES.
YOU WERE LUCKY.

*

*DO 1
I HAVE CHOSEN AN INTEGER O THROUGH 100. TRY TO GUESS
MY NUMBER IN AS FEW TRIES AS POSSIBLE.

YOUR GUESS IS :50 T00 LOW

YOUR GUESS IS :75 TO0 HIGH

YOUR GUESS IS :62 T0O0 HIGH

YOUR GUESS IS :56 CORRECT IN =+ 4 GUESSES.
GOOD JOB.

*

*DO 1
I HAVE CHOSEN AN INTEGER O THROUGH 100, TRY TO GUESS
MY NUMBER IN AS FEW TRIES AS POSSIBLE,

TOUR GUESS IS :50 TOO HIGH
YOUR GUESS IS :25 TOO LOW
YOUR GUESS IS :37 TOO LOW
YOUR GUESS IS :4k TOO HIGH
YOUR GUESS IS :41 TOO0 HIGH
YOUR GUESS S :k2 TOO HIGH
YOUR GUESS IS :ho TOO0 HIGH
YOUR GUESS IS :39 TOO HIGH
YOUR GUESS IS :38 CORRECT IN =+ 9 GUESSES.

BUT YOU SHOULDN'T NEED MORE THAN T GUESSES.

Note that the program does not reveal the technique of binary search, but merely alludes to the fact

that no more than 7 guesses are necessary. Classroom use of this program has resulted in almost all

students "discovering" the idea of binary search after only a few runs of the program.

O

ERIC

Aruitoxt provided by Eic:

&_\ _

=

ERIC

Aruitoxt provided by Eic:

An excellent student assignment is the writing of a program which reverses the roles of the

user and computer in the previous example. The computer should be programmed se that it will guess

a number the user has determined. After each guess, the user inputs LOW, HIGH or CORRECT, and

the program

01.01
0l.02
01,03
01,04
01,05
01,06
01,07
01,08
»

continues until the correct number is found. One such program is:

TYPE "YOU THINK OF AN INTEGER 1 THROUGH 100, AND I WILL GUESS"!
TYPE "YOUR NUMBER. AFTER EACH GUESS TYPE HIGH, LOW, OR CORRECT."!
SET LOW=0; SET HIGH=101; SET C=0

SET GUESS=FITR((HIGH+LOW)/2)

TYPE %5.0,"I GUESS ",GUESS," THIS VALUE IS "; ASK ANS,!; SET C=C+l
IF (1357-ANS) !.07; SET LOW=GUESS; GOTO 1.0

IF (8978-ANS) 1,08; SET HIGH=GUESS; GOTO 1.0k

TYPE 1!, C, " GUESSES ISN'T SO BAD."!!

(Note that FOCAL automatically assigns LOW = 1357, HIGH = 8978, and CORRECT > 8978 when these

responses are given to the ASK command.)

A run of this program is:

*Do 1
YOU THINK OF AN INTEGER 1 THROUGH 100, AND I WILL GUESS
YOUR NUMBER. AFTER EACH GUESS TYPE HIGH, LOW, OR CORRECT.

HHHHHHHKH

GUESS =+ 50 THIS VALUE IS :LOW
GUESS =+ 75 THIS VALUE IS :LOW
GUESS =+ 88 THIS VALUE IS :HIGH
GUESS =+ 81 THIS VALUE IS :LOW
GUESS =+ 84 THIS VALUE IS :LOW
GUESS =+ 86 THIS VALUE IS :HIGH
GUESS =+ 85 THIS VALUE IS :CORRECT

+ T GUESSES ISN'T SO BAD.

This program will guess any number chosen within 7 guesses, providing that all user clues (LOW, HIGH,

and CORRECT) are consistent. There are no checks built into the program which prevent the user from

supplying contradictory information. Writing the few steps necessary to do this should be a part of the

assignment for better students.

35

42

HI. USING THE PROPERTIES OF =, +, AND * WHEN SOLVING EQUATIONS

A, Postulated Properties: Closure, Commutative, Associative, Distributive, Inverse, and Identity

The reflexive, symmetric, and transitive properties of equality and inequality are excluded
from this section since little assistance is needed when introducing these postulates. One might, how-
ever, make use of problems like: "Using the integers 1, 2, 4, and 8, and the operations +, -, *, /,

and 1, express 64 in as many different ways as possible. " Five, but not all possible, solutions are:

#TYPE 1%2#4%8 1
=+ 6L

: ' #*TYPE 1%#84(4-2),1
=+ 64
#7YPE 84((k=2)/1),1
=+ 64
*TYPE 8%*24(L-1j,!
=+ 6L
*TYPE L4(8/2-1),!

=4+ 64
»

By doing problems such as this, students gain experience with arithmetic operations, since most of their
work is in the creation and mental evaluation of many different expressions before using the computer

to confirm their results.

{ "‘ The commutative, associative, and distributive properties can be demonstrated in a variety
of ways. One effective method is to introduce the three postulates for + and * in a conventional way,

and then run the following demonstration program:

01.10 ASK ?7A?,?B?,7C?7,!
01.20 TYPE %8,04,1 "COMMUTATIVE PROPERTY:"!!
01.30 TYPE 7A%B?,1,7B"A?,1!
01.40 TYPE ?A-B?,1,?B-A%,111
01,50 TYPE "ASSOCIATIVE PROPERTY:"!!
01.60 TYPE ?(A%*B)%C?,1,7A%(B%*C)7,!!
01.70 TYPE ?(A-B)-C?,!,?A-(B-C)7,!11
. 01.80 TYPE "DISTRIBUTIVE PROPERTY:"!!
01.90 TYPE ?A%*(B-C)?,!,7A%B-A%C?,11
21.91 TYPE ?A-(B*C)?,!,?7(A-B)*(A-C)7,!!

37

43

COMMUTATIVE PROPERTY:

This program checks the validity of the three

A%B=+ 12.0000 properties with the operations * and -. Many

B¥A=+ 12,0000 students seem to understend better the import=
ance of these properties when they also see

A-B=- 1,0000 several cases for which the properties are not

B-=A=+ 1.0000 valid.

ASSOCIATIVE PROPERTY:

(A%B)*C=+ 60,0000
A*(B%*C)=+ 60,0000

{A=-B)=C=- 6,0000
A-(B=C)=+ L,0000

DISTRIBUTIVE PRCPERTY:

A¥(B-C)=- 3,0000
A*B-A%C=. 3,0000

A-(B¥*C)=- 17.0000
(A-B)*(A-C)=+ 2.0000

By tollowing this demonstration with an assignment requiring that a similar program be written to check

the validity of these properties with the operations of + and /, the student must do little more than

write the necessary expressions. This writing, however, is enough to build the student’s confidence in

his understanding of these properties. Better students might be interested in exploring the changes in

the validity of these properties if absolute value is used on all expressions or if a finite set with different

operations (such as binary Boolean algebra) is used.

The introduction of additive and multiplicative inverses may be supplemented by assigning the

apparently easy task of writing a program which will ASK for a number and then typeout the two in-

verses. Such a program is: "~
01.10 ASK ?A?,!
01.20 TYPE "ADDITIVE INVERSE IS: "y =A,l
01.30 TYPE "MULTIPLICATIVE INVERSE IS: “; IF (A) 1.4, 1.5, 1,4
01.40 TYPE 1/A,!!; QUIT
01.50 TYPE "NOT DEFINED"!!
*
*DO 1
A:16

ADDITIVE INVERSE 1IS: =- 16,0000
MULTIPLICATIVE INVERSE IS: =+ 0.0625

ERIC

Aruitoxt provided by Eic:

38

44

&9

A

O

ERIC

Aruitoxt provided by Eic:

*DO 1

A:0

ADDITIVE INVERSE IS: =+ 0.0000
MULTIPLICATIVE INVERSE IS: NOT DEFINED
¥DO 1

A:S

ADPDITIVE INVERSE IS: =a 5.0000
MULTIPLICATIVE INVERSE IS: =+ 0.2000

Experience with this program has shown that many students will NOT write a correct solution the first
time because they do not completely understand the two definitions. After the students have written
this program, the teacher can quickly identify and then clarify the specific misunderstandings of indi-
vidual students,

The idea of closure is an easy one, and use of the computer should not be necessary to rein-
force a usual presentation. If, however, a little extra time is available, the concept of closure can
be used to introduce other ideas to students new to programming. One such possibility is to assign the
problem of writing a program which will determine whether the property of closure holds for each of the
operations +, -, *, and / on some infinite set - say all positive multiples of 6. The initial reaction of
many students has been that this is an easy assignment, but they soon discover that the computer CAN
NOT PROVE even elementary concepts involving infinite sets. When this discovery is made, the
teacher may alter the assignment to check only a finite set ~ say all positive multiples of 6 less than

or equal to 150, The following program is a student written solution to this problem.

01.01 FOR N=6,6,150; DO 2

01,02 QUIT

02.01 TYPE !"NOW CHECKING ", %3,0, N, " FOR: ™!

02,02 TYPE "ADDITION"!; FOR M=6,6,150; SET ANS=N+M; DO 3

02,03 TYPE "SUBTRACTION"!; FOR M=6,6,150; SET ANS=N-M; DO 3
02,04 TYPE "MULTIPLICATION"!; FOR M=6,6,150; SET ANS=N*M; DO 3
02,05 TYPE "DIVISION"!; FOR M=6,6,150; SET ANS=N/M; DO 3

SE
03.01 IF (ANS-FITR(ANS)) 3.0h4, 3,02, 3,0k
03,02 IF (150-ANS) 3,04; IF (ANS) 3,04, 3,04, 3.03

03,03 IF (ANS/6-FITR(ANS/6)) 3.04, 3,05, 3.0k

03,04 TYPE " NOT CLOSED USING ", N, " AND ", M,!; SET M=151
03,05 CONTINUE

»

39

45 .+

Mote that this program assumes very little. Even the commutative law is not assumed, for both "A

operation B" and "B operation A" are checked. Note that this student even verified (step 3.01) that

the result of each operation is an integer. The program check: "N operation M" by fixing N, then

substituting elements of the ser for M until closure is verified or a single exception is found. This is

done for all N's, regardless of the outcome of checking previous N's. The output appears as:

%GO

NOW CHECKING =+ 6 FOR:
ADDITION

NOT CILOSED USING =+ 6
SUBTRACTION

NOT CLOSED USING =+ 6
MULTIPLICATION

NOT CLOSED USING =+ 6
DIVISION

NOT CLOSED USING =+ 6

NOW CHECKING =+ 12 FOR:
ADDITION

NGT CLOSED USING =+ 12
SUBTRACTION

NOT CLOSED USING =+ 12
MULTIPLICATION

NOT CLOSED USING =+ 12
DIVISION

NOT CLOSED USING =+ 12

NOW CHECKING =+150 FOR:
ADDITION

-NOT CLOSED USING =+150
SUBTRACTION

NOT CLOSED USING =+150
MULTIPLICATION

NOT CLOSED USING =+150
DIVISION

NOT CLOSED USING =+150
*

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

Modular Arithmetic (Supplementary)

=+150

=+ 30

=+ 6

=+1L4
=+ 12
=+ 18
=+ 6

By checking all operctions
in this way, the student
has demonstrated an under-
standing of the important
programming concept of
using multiple “OR state-
merts.

The introduction of modular arithmetic can Le beneficial in several ways at this stage of

student study. In addition to motivating independent study and reinforcing computational skills,

modular arithmetic provides a simple ye! useful mathematical system in which the postulated properties

of the previous section appear in a different light., (A good reference, written for students, about

O

ERIC

Aruitoxt provided by Eic:

16

">

ERIC

Aruitoxt provided by Eic:

modular arithmetic is Secret Codes, Remainder Arithmetic, and Matrices by Lvman C, Peck; N.C.T.M.

1965.) The five programs shown in this section are all intended as topics for short assignments, as the
students will benefit most by actually writing these progroms themselves.

The first program cllows the user to input a positive integer and @ mod m, and then converts

the given integer to mod m. The program is:

01.10 C CONVERSION OF A POSITIVE INTEGER TO AN INTEGER MOD M.
T "

01.20 ASK "THE INTEGER ",I," IN MOD " ,M," I
01,30 SET A=I-FITR(I/M)*M; TYPE %5.0,A,'!
*

*GOo

THE INTEGER :1526 1IN MOD :27 IS =+ 1k
%GO

THE INTEGER :123 1IN MOD :123 IS =+ 0
*GO

THE INTEGER :8 1IN MOD :7 IS =+ 1

By writing this program, students demonstrate an uiderstanding of the meaning of a number in mod m as
well as the important programming technique of retaining the remainder after a division.
The definition of congruent integers will be new to the majority of students. Their under-

standing of this definition can be tested by having them write a program similar to:

01.10 C IDENTIFICATION OF CONGRUENT POSITIVE INTEGERS IN MOD M,
01.20 ASK "THE INTEGERS ",A," AND ",B," IN MOD ",M," ARE "
01.30 SET N1=A-FITR(A/M)*M; SET W2=B~FITR(B/M)*M

01,40 IF (N1-N2) 1.5, 1.6, 1.5

01.50 TYPE "NOT CONGRUENT."!!; QUIT

01,60 TYPE "CONGRUENT,"!!

*

*GO
THE INTEGERS :190 AND :394 1IN MOD :17 ARE CONGRUENT.

*GO
THE INTEGERS :125 AND :104 1IN MOD :11 ARE NOT CONGRUENT.

4

47

Another way of approaching the definition of congruent numbers is the fol loviing:

01.10 C PROGRAM TO LIST ALL MODS (2 THROUGH 100) IN WHICH TWO GIVEN
01.20 C POSITIVE INTEGERS ARE CONGRUENT.

01.30 ASK "THE INTEGERS ",A," AND ",B," ARE CONGRUENT IN MODS:"!
01.40 FOR M=2,100; DO 2

01.50 QUI.

02,10 SET N1=A-FITR(A/M)*M; SET N2=B-FITR(B/M)*M
02.20 IF (N1-N2) 2.4, 2,3, 2.b

02,30 TYPE %5.0,M,!

02.40 CONTINUE

*

*GO

THE INTEGERS :101 AND :37 ARE CONGRUENT IN MODS:
=+ 2

=+ 4

=+ 8

=+ 16

=4 32

=+ 64

*

*GO

THE INTEGERS :1584 AND :1980 ARE CONGRUENT IN MODS:
=4 2

=+ 3
=+ b
=+ 6
=+ 9
=+ 11
=4 12
=+ 18
=+ 22
=+ 33
=4 36
=4 Ly
=+ 66
=+ 99

A problem that appeals to many students is that of determining, WITHOUT using the computer, the two

- numbers less than 1000 that are congruent in the greatest number of mods. By working on this problem,

students might "discover" several important properties of divisors and prime numbers.

program. The following program ASKs for @ mod, then types out the multiplication tables for the given

Tables for the arithmetic operations in a given mod can be generated easily with a short

mod, (The entered mod must be less than or equal to 11 so that the table will fit on a page.)

O

ERIC

Aruitoxt provided by Eic:

42

4};?1

01.10 ASK "MULTIPLICATION TABLES, MOn " M

01.15 TYPE %2.0,!" ", FOR C=0,M- 1, TYPE Cc," "
01.16 TYPE !; FOR I= 1, 6*M+8 TYPE "
01.17 TYPE " .
e 01,20 FOR R=0,M=1l; DO 2
-« 01.30 QUIT
02.10 TYPE R," * "; FOR C=0,M-1; TYPE C*R-FITR((C*R)/M)*M," "
02,20 TYPE !," LA
*
*GO

MULTIPLICATION TABLES, MOD :5

¥ =4 0 =+1 =+2 =+ 3 =+ 14
PR T T I T I S T IR T

*
=+ 0 : =+ 0 =+ 0 =+ 0 =+ 0 =+ 0
=+ 1 : =+ 0 =+1 =+2 =+ 3 =+ 1
=+ 2 : =+ 0 =+ 2 =+ L4 =+1 =+ 3
=+ 3 : =+ 0 =+3 =+1 =+ L =+2
=+ 4 % =+ 0 =+ 4 =+ 3 =+2 =+1
. *
{‘ ~ By changing the typed statement in step 1.10, and replacing the operation * with +in step 2.10, the
[same program will generate addition tables. After making these changes, a run appears as:
*GO
ADDITlON TABLES, MOD :5
=+ 0 =+ 1 =+2 =+3 =+ 4
**********‘***********}***************
*
=+ 0 : =+ 0 =+1 =+2 =+ 3 =+1
=+ 1 : =+ 1 =+2 =+3 =+ 4 =+0
=+ 2 :. =+ 2 =+ 3 =+ 4 =+ 0 =+1
- =+ 3 : =+ 3 =+ 4 =+ 0 =+1 =+ 2
. =+ 4 * =+)k =+ 0 =41 =+ 2 =+ 3
*‘ '
‘5'1
- 43

Aruitoxt provided by Eic:

ERC . 49

The existence of reciprocals in modular arithmetic should be contrasted with that of recipro-

cals in base 10 arithmetic. Such a contrast helps students to appreciate the magnitude of the definition

of reciprocals, for only in some mods do all elements except O have a reciprocal, in all mods the reci-

priocals are integers, and in most instances the value of the reciprocal of a given number is not im-

mediately appare

nt.

A program for computing the reciprocals of integers in a given mod is:

0l1.10
01.20
0l1l.30
0l.ko

02.10

02.20
02.30
*

Two runs of this p

MOD
NU

+ + + +++++++++4++

+

+ + + + + +

b T TR T T T { S O (| 1 [I [Y [O I |
+

ERIC

Aruitoxt provided by Eic:

C COMPUTATION OF RECIPROCALS OF INTEGERS IN MOD M,

ASK “MOD “,M,!" NUMBER RECIPROCAL"!

FOR N=0,M~1; FOR R=0,M-1; DO 2

QUIT

SET A=N*R-FITR((N*R)/M)*M; IF (A-1) 2,3, 2.2, 2.3
TYPE %5.0,N," ",R,!

CONTINUE

rogram are:

*Go

23 MOD :14

MBER RECIPROCAL NUMBER RECIPROCAL
1 =+ 1 =+ 1 =+ 1
2 =+ 12 =+ 3 =+ 5
3 =+ 8 = 5 =+ 3
L =+ 6 =+ 9 =+ 11
5 =+ 1k =+ 11 =+ 9
6 =+ L =4 13 =4 13
7T =+ 10 *

8 =+ 3

9 =+ 18

10 =+ T

11 =+ 21

12 =+ 2

13 =+ 16

14 =+ 5

15 =+ 20

16 =+ 13

17 =+ 19

18 =+ 9

19 =+ 17

20 =+ 15

21 =+ 11

22 =+ 22

50

C. Developing and Using Basic Theorems for Solving Simple Equations

A presentaiion of the basic theorems used for solving simple equations (i.e., if a = b, then
a+c=b+c;if c=-(a+b), then ¢ = -a + (-b)) provides an excellent opportunity to demonstrate that
the computer will not do everything. The following program examines the "proposed” theorem: if a = b,
then a*c = b*c by checking the validity of the conclusion with over 160,000 pairs of values for c and

a=bhb.

01.10 FOR A=-100,.5,100;TYPE %4,01,A,!;SET B=A;FOR C=-100,.5,100;00 2

02,10 IF (A*C-B*C) 2.2,2,3,2,2

02,20 TYPE "NOT TRUE FOR ",?A?,? B?,? C?,!; QUIT
02.30 CONTINUE

*

The output of this program appears as:

*DO 1

=-100,0
== 99.5
=~ 99.0
Se 9805

=- 0.5 The running of this program is best done overnight as the
f: g‘g complete procedure requires a little over 14 hours on the
—+ 1.0 PDP-8/S. Each time A and B change value, this value
. is typed simply to demonstrate that the program is running
. properly.
=+ 98,5
=+ 99.0
=+ 99.5
=+4100,0
*

What, however, has been proved by running this program? Only that the theorem is valid
for the 160,000+ pairs of values that were used To further emphasize this point, a similar program
which checks the "proposed" theorem b- F'T =1+b, using the same 160,000+ pairs of values is:

01,10 FOR A=-100,.5,100; TYPE %4,01,A,!; FOR B=-100,.5,100; DO 2
02,10 IF (B-(1-4*p)/(4*pa-1)-(14B)) 2. 2 b2.3,2.3

02,20 TYPE "NOT TRUE FOR ",?A?,7 B?, ; QUIT
02 30 CONTINUE

o1

E

The output of this program is identical to that of the previous program - the "theorem" is valid for all

of the values checked. In this case, however, the value A = 1/4, which was not checked, makes the

theorem invalid as the term l;ﬁ is undefined.

After students have proved WITHOUT further use of the computer, the basic theorems used
for solving simple equations, and the focus changes to the solving of these equations, the computer can
again be useful.

For students who need extra work on this topic, a drill program can be written which will
supply them with an equation, accept their solution, and give an immediate diagnostic. The program
might have 16 to 20 different equations written into it, A motivating factor might also be included
which will prematurely stop presenting problems to a student if he responds with five or six consecutive
correct answers. The program can also be written to maintain an error frequency record on each problem
and/or student. This record can be useful to the teacher, both for giving individual help and for pre-
paring lesson plans. This type of application is, however, quitz boring for the average or better
students.

Another approach to this same type of drill program is the following exampie, which supplies
the student with equations of the form Ax * B = C * Dx (this form can easily be altered) and lets the

student solve the problem a step at o time, Before examining the program, look at a sample run:

/
"#D0 10.1; DO 1

must be ignored
PROBLEM IS: \L \1/ ;‘/

=+. 3,00%X MINUS =+ L,00 === =- 8,00 PLUS =+ T7.00%X

OPERATION TO BE A,S,M, OR D? :A USING THE QUANTITY :4 TIMES (X OR 1):1

A student input A ¥y
PROBLEM IS:

=+ 3,00%X MINUS =+ 0,00 === =—- 4,00 PLUS =+ T7.00%X

OPERATION TO BE A,S,M, OR D? :S USING THE QUANTITY :7 TIMES (X OR 1):X

_— — _—

PROBLEM IS:
=— L,00*X MINUS =+ 0,00 === =- L4,00 PLUS =+ 0,00%X

OPERATION TO BE A,S,M, OR D? :D USING THE QUANTITY :-4 TIMES (X OR 1):1

PROBLEM IS:
=+ 1,00%X MINUS =+ 0,00 === =+ 1.00 PLUS =+ 0,00%X

YOU'VE SOLVED THE PROBLEM!

O

ERIC 52

The command DO 10.1 determines which problem is to be done (10.1 means problem 1, 10.3 means
problem 3, etc.). The command DO 1 then begins the student/computer interaction.

-
¥ Following is a sample PART 10 containing the values for three different problems.
-

The variables used represent the equation: A*X 01 B =C 02 D*X. When assigning the operations 01
and 02, MINUS is indicated with a 3 and PLUS with a0.
Thus Problem 1 (10.1) is: 3x MINUS 4=-8PLUS7
Problem 2 (10.2) is: 4x MINUS -8 = 3 PLUS 2
Problem 3 (10.3) is: 5.9x PLUS 3 = -4.2 PLUS 20.3
The teacher can change the number of problems, as well as alter the values in any or all problems,
simply by modifying the steps in part 10. Part 1 of the program can remain unchanged - it will handle

all equations of the given form which have a unique solution. Part 1is:

01,10 T %5.02,!"PROBLEM IS:"1 A, "#X"
01.11 IF (01-3) 1.12;T " MINUS ",B;GOTO 1.13
01,12 T " PLUS ",B
= 01,13 T " === "_T;IF (02-3) 1.1b4;T " MINUS Y D,"#X"1!; GOTO 1,20
: 0l1.14 T " PLUS ",D,"*X"1!
01.20 IF (A-1) 1.22,1,21,1,22
01.21 IF (FABS{B)+FABS(D)) 1,22,1.2h4,1,22
01.22 IF (D-1) 1.30,1.23,1.30
01.23 IF (FABS(A)+FABS{C)) 1.30,1,24,1.30
0l.24 T "YOQU'VE SOLVED THE PROBLEM!"!!1;QUIT
01,30 A "OPERATION TO BE A,5,M, OR D? ",0,"USING THE QUANTITY ",Q
01.31 A "TIMES (X OR 1)",T,!1;IF (T-1) 1,.40,1.32,1.L0
01.32 IF (0-13) 1.33;5 A=A%Q;S B=B*Q;S C=C*Q;S D=D*Q;GOTO 1,10
01.33 IF (0-L4) 1,34;5 A=A/Q;5 B=B/Q3;S C=C/Q;S D=D/Q;GOTO 1,10
01,34 IF (0-3) 1.36;S C=C~Q;IF (01-3) 1,35;S B=B+Q;GOTO 1,10
01.35 5 B=B-Q;G0TO 1,10
01,36 s C=C+Q;IF (01-3) 1,37;S B=B-Q;GOTO 1,10
01.37 S B=B+Q3;GOTO 1,10
. 01.40 IF (0-4) 1,42;T I"THAT OPERATICN IS LEGAL, BUT DOING IT WILL"
Ol,41 T ™ ONLY COMPLICATE THE PROBLEM,"!"TRY ANOTHER."!!;GOTO 1,30
01.42 IF (0-3) 1,448 A=A-Q;IF (02-3) 1.43;5 D=D+Q;G0TO 1,10
n1,43 s D=D-Q;G0TO0 1,10
01.44 5 A=A+Q;IF (02-3) 1,45;5 D=D-Q;GOTO 1,10
01,45 S D=D+Q3;GOTO 1,10

‘—mﬁ‘i.‘

47

153:3

In this program, steps 1.10 through 1,14 typeout the problem, steps 1.20 through 1.24 check to sec if
the problem has been solved, steps 1.30 through 1.37 allow the next theorem to be appiied in solving
the equation and execute the theorems involving only e constant term, and steps 1.40 through 1.45

execute the theorems involving an x term. A second sample run of the program is:

*D0 10.23 DO 1
PROBLEM IS:
=+ 4,00%X MINUS =- 8,00 === =+ 32,00 PLUS =+ 2,00%X

OPERATION TO BE A,S,M, OR D? :S USING THE QUANTITY :4 TIMES (X OR 1):X

PROBLEM 1IS:
=+ 0,00%X MINUS =- 8,00 === =+ 3,00 PLUS =~ 2,00%X

OPERATION TO BE A,S,M, OR D? :5 USING THE QUANTITY :3 TIMES (X OR 1):1

PROBLEM IS:
=+ 0,00%X MINUS =- 5.00 === =+ 0,00 PLUS =~ 2,00%X

OPERATION TO BE A,S,M, OR D? :D USING THE QUANTITY ;-2 TIMES (X OR 1):X

THAT OPERATION IS LEGAL, BUT DOING IT WILL ONLY COMPLICATE THE PROBLEM.
TRY ANOTHER.

OPERATION TO BE A,S,M, OR D? :D USING THE QUANTITY :-2 TIMES (X OR 1):1

PROBLEM 1IS:
=+ 0.060%X MINUS =+ 2,50 === =+ 0,00 PLUS =+ 1,00%X

YOU'VE SOLVED THE PROBLEM!

This program will allow the student to use, as often as desired, any of the basic theorems:

ifa=b, thena+c=b+c
ifa=b, thena-c=b -c
ifa=b, thena*c=b *¢

ifa=b, andc# 0, then a/c =b/c

(The only exception is that division by an x term is not allowed.) By seeing the computer execute the
specific theorem requested using the numbers he has indicated, students are less likely to incorrectly \
believe they are applying one theorem when they are actually using another. Afier the teacher \
develops programs such as this for several of the equation forms often found difficult by many students, “
the computer can become a valuable teaching assistant, and the typed copy produced by the students'

work can provide an excellsnt source of specific information about the difficulties of Individual

students,

O

ERIC 94

Aruitoxt provided by Eic:

A challenging problem for better students is the task of writing a program which will accept
the two sides of any first degree equation and then solve the equation. In accomplishing this task, the

student must not only apply the basic theorems being studied, but also must create a solution algorithm

B2y é

- that is unlil-e those he has previously used. This is indeed a good exercise in "problem solving." The
equation to be solved should be entered as in the examples of Section II~A (SET L = ieft side of equa~
tion and SET R =right side of equation in part 2 of the program). Regardless of the number of terms
entered on each side of the equation, the equation can be considered to be composed of: L =Ax +B

and R=Cx + D. One possible algorithm for obtaining the solution =T is

(Nletx=0, thenLS@)=Band RSQ) =D
(2) let x = 1, then LS(1) = A+B and RS(1) = C+D
(3) now A~C can be determined using:

SX =RS(1) -RS(Q)=C

and

CX =L15(1) - LS(Q) - SX = A-C
Thus the solution is

x=BO-BO0 grex o)

The algorithm described is student written, as is this program which follows it:

R 01,10 FOR X=0,1; DO 2; SET Ls[X]=L; SET RS[X]=R

7 01.20 SET sX=Rs[1]-Rs[0]; SET CX=LS[1]-LS[0]}-8X

01,30 TYPE "“THE SOLUTION IS X", %6.03, (Rs[0]-Ls[0])/cX,1t!; QUIT
#*

[PFIN
ik}

Several runs of this program ure:

*2.01 SET L=X; SET R=-9 solvingx=9
*GOo
THE SOLUTION IS X=+ 9,000
#2,01 SET L=-4; SET R=X solving -4=x
*Go
. THE SOLUTION IS X=- 4,000
#2 .01 SET L=X+5-3%X; SET R=L#X-7 solving x+5 -3x=4x -7
*Go
° THE SOLUTION IS X=+ 2,000
#2,01 SET L=3%X/5-T3; SET R=(2/3)*X+5 solving %-7=%x+5
*Go
THE SOLUTION IS X=-~180,000
#2,01 SET L=x+l§; SET R=X+l solving x+4=x+4

*GOo
THE SOLUTION IS X?02,80
»

49

Note that this program did not properly describe the solution in the last example. The student did not
anticipate any possibility other than a unique solution. Although this may not be considered a serious
oversight at this early stage of learning to solve equations, the discovery naturally leads the student to

further inquiry, A program which will handle all types of first degree equations is:

01,10 FOR X=0,13; DO 2; SET Ls[X]=L; SET RS[X]=R

01,20 SET sx=Rs[1]-Rsfo]; SET CX=LS[1]-Ls[0]-5X

01,25 IF (CX) 1.3,1.4,1.3

01,30 TYPE "THE SOLUTION IS X", %#6.03, (Rs[0]-Ls[0])/cX,!!; QUIT
01.40 IF (Rs{o]-Ls{o0]) 1.6,1.5,1.6

01,50 TYPE "ALL VALUES OF X SATISFY THE EQUATION"!!; QUIT

01,60 TYPE "NO VALUES OF X SATISFY THE EQUATION"!; QUIT

Several runs of this program ore:

#2,01 SET L=X+4; SET R=X+k
*GO
-ALL VALUES OF X SATISFY THE EQUATION

#2,01 SET L=X+3*X+5; SET R=6+2%X-L¥*X+7
%GO
THE SOLUTION IS X=+ 1,333

#2,01 SET L=5+X; SET R=X-T

*GO

NO VALUES OF X SATISFY THE EQUATION
* .

The same program can be extended (either as an assignment or for demonstration) to type out
the steps used in solving the equation. If a student can complete this program, he is certainly demon=
strating sufficient evidence that he is capable of solving any first degree equation he might encounter,

Such a student written program is:

01.01 TYPE %6.03;SET B=03;FOR X=0,1;D0 23;SET LS[X]=L;SET RS[X]=R

01,02 SET SX=Rs[1]-EKS[0];SET CX=LS[1]-LS[0]~SX;TYPE "TO BOTH SIDES:",!
01,03 IF (sX) 1.04,1,05;TYPE "SUBTRACT ", SX,"#X" 1;SET B=B-1;GOTO 1.05
01,04 TYPE "ADD “,-5X,"*X"1; SET B=B-1l

01,05 IF (Lsfo]) 1,06,1,07;TYPE "SUBTRACT ",LS[0]},!;SET B=3-1;GOTO 1,07
01,06 TYPE "ADD ",-LS[0],!1;5ET B=B.l

01,07 IF (¢X-1) 1,08,1.11,1,08

01,08 IF {FABS(CX)-1) 1.09,1.,093TY#& "DIVIDE BY " ,CX,!3;G0TO 1,10

01,09 TYPE "MULTIFLY BY “,1/CX,!

01,10 SET B=B-l

01.11 IF (B) 1.,12;TYPE "DO NOTHING",!

01,12 TYPE “THE SOLUTION IS X",(ks[o].Ls[0])/cx,!!

{Note - this program has not provided for the case of no solution or multiple solutions.)

‘50

ERIC

56

A\,
N’

=

g’\;
5 f

L

O

ERIC

Aruitoxt provided by Eic:

Several runs of this program are:

#2 .1 SET L=X; SET R=T7 solving x=7
%GO '

TO0 BOTH SIDES:

DO NOTHING

THE SOLUTION IS X=+ T.000

#2,1 SET L=X+3%X+3-2%X+l; SET R=5-2%X+1 solving

*G0

T0 BOTH SIDES: 343t] =5 Ot
ADD =+ 2.000%X x+3-2x 5-2x+1
SUBTRACT =+ 4,000

DIVIDE BY =+ 4,000

THE SOLUTION IS X=+ 0.500

"#2 .1 SET L=h#*X+X-10; SET R=-2%X+2 solving
*#30
T0 BOTH SIDES: dx+x=10==2x+2

ADD =+ 2,000%X

ADD =+10.,000

DIVIDE BY =+ T.000

THE SOLUTION IS X=+ 1,T1h

#2,1 SET L=(1/4)%X+(1/8); SET R=(5/4)*X-(7/8) solving
%GO

TO BOTH SIDES:

SUBTRACT =+ 1,250%X
SUBTRACT =+ 0,125

THE SOLUTION IS X=+ 1,000

i
EXNS)
x
1
o] ~y

Bl -
] —

If this program is used for demonstration, the teacher should ensure that students realize that the steps

given for the solution illustrate only one of many ways to soive the equation.

D. Very Elementary Statistics = Sum, Mean, and Standard Deviation (Supplementary)

The two programs shown in this section are suggested as topics for student assignments.
Although not related to the other topics in this chapter, the mathematics involved can be handled
easily by students just beginning algebra, and the writing of the programs might stimulate some in-

dependent study.

The first example is a program that simuiates the response of an adding machine. The program
repeatedly ASKs for a number uniil the user responds with the word TOTAL. When this occurs, the sum
of the input numbers, the total number of input numbers, and the average of these numbers is typed out.

The program and a sample run are:

51

o7

01,10 TYPE "ADDING MACHINE SIMULATOR"i!; E¥aSE

01,20 ASK NUMBER,!; IF (NUMBER-55h422) 1.3,1.%,1,3

01,30 SET SUM=SUM+NUMBER; SET ENTRIES=ENTRIES+l; GOTO 1,2

01,40 SET AVERAGE=SUM/ENTRIES; TYPE %6.02,11,75UM ?,!,ENTRIES?,!
01.50 TYPE 7AVERAGE?,!!

»

*Go
ADDING MACHINE SIMULATOR

6

.5
2.25

3
9
0
I
-2
5
11.75
I
T

OTAL

SUM =+ 27,00
ENTRIES=+ 10,00
AVERAGE=+ 2.70

*

Classroom experience with this assignment has shown that cften several students expand upon
the idea by writing programs to simulate more elaborate calculators. Many of the programs allow the
user to irput ADD, SUB, MUL, DIV, TOTAL, and SUBTOTAL, as well as the arguments for these
operations. Such a program may not give immediate reinforcement to the mathematics being studied in
class, but in writing the program, students develop programming techniques that are useful throughout
the year. If limited class time does not permit this program to be a class assignment, it might be
offered as an ¥ extra credit " problem or as a small-group project which will later be explained to the
entire class by the students in the group.

A second problem is that of computing the mean and standard deviation of N numbers. This
topic often is never presented in high school, yet the mathematics involved is suitable for inclusion in
Algebra 1. Although the subject can be avoided, is there really a good reason for not explaining the

meaning of the notation Z(xi - m)2 ? Astudent written program to accomplish this task is:

01.10 TYPE "COMPUTATION Ok MEAN AND STANDARD DEVIATION "; ERASE

01,20 ASK "OF N TERMS,"!"NUMBER OF TERMS IS ", N,!

01,30 TYPE "THE TERMS ARE";FOR I=1,N;ASK " " A[I];SET TOTAL=TOTAL+A[I]
01,40 SET MEAN=TOTAL/N; FOR I=1,N; SET SUM=SUM+(A[I]-MEAN)+2

91.50 SET ST=FSQT(SUM/N); TYPE %#7.03,11,7MEAN?,!,7STANDARD-DEVIATION?,1}

O

ERIC 58

Aruitoxt provided by Eic:

.

O

ERIC

Aruitoxt provided by Eic:

¥GO

COMPUTATION OF MEAN AND STANDARD DUVIALIIN _7 N UERML.
NUMBER OF TERMS 1S :9
THE TERMS ARE :1 :3 12 15 :3 u :3 th 12

MEAN=+ 3,000
STANDARD~DEVIATION=+ 1.155

L]

This assignment has been successfully presented to a class by simply stating the probjem and suggesting
that several books in the library might be usefui in finding the definition of standard deviation. if this
assignment did no more than demonstrate that there are mathematics hooks ofher then textbooks in a

library, the time required woulu be well spent.

Ordering (Supplementary)

nl
.

The concept of ordering a list of N numbers is an intuitive one for most students, but the
writing of a program to accomplish this task is not guite as obvious. With average classes, this problem
should be prefaced with a program to find the maximum and/or minimum values in o list of N numbers.

There are many algorithms for ordering numbers, and guiding the students' "discovery" of
some of these algorithms provides a significant contribution to their abilities in general problem solving.
Consider first the problem of arranging N numbers in descending order when nothing is known about the

numbers. A valid algorithm for doing this is shown in the following flowchart.

OBTAIN M- LENGTH
OF LIST

!
OBTAIN LIST OF
NUMBERS
Ay AN

szurh_¥ —

LOCATE THE
LARGEST NUMBER
IN THE LIST A7 - Ay
(CALL IT A HERE)

INTERCHANGE 41 AND
THE LARGES
NUMBER A HERE

TYPEOUT THE
VALUES Ay THRY Ay

(DONE ’

L

A step-by-step example of this technique is:

Let N = 5, ther

A= 2 S A] =8

Ay=4 |E A=4 !2 A=5 | .

Ay=8 |A Aj=2 |A Ay=2 g Ay=4 /Ex

Ay =-3 *(‘: Ag=-3 & A3 |R A =3 R A=

As=5 VH A= Ho A=4 VH A =2 g Ag=-3
original list of numbers The resulting list A‘ through A5 is arranged in descending order.

A program which uses this algorithm is:

01.10 TYPE "PROGRAM TO ARRANGE N NUMBERS IN DESCENDING ORDER."!; ERASE
01.20 ASK !"HOW MANY NUMBERS? " ,N,!; FOR I=1,N; ASK A[I]," "
01,30 FOR J=1,N-l; SET HERE=J; SET LARGE:A[Ji; DO 2

01,40 TYPE !!"THE NUMBERS IN DESCENDING ORDER ARE:"!, %6,02
01.50 FOR K=1,N; TYPE A{K],!
01.60 QUIT

02.10 FOR I=J+1,N; IF (A[I]-LARGE) 2.2,2.2; SET HERE=I; SET TLARGE=A{I]
02.20 CONTINUE

02.30 SET A[HERE]=A[J]; SET A[J]=LARGE

*

A run of this program is:

*Go
PROGRAM TO ARKANGE N NUMBERS IN DESCENDING ORDER.
HOW MANY NUMBERS? :8

:3.) :=17.5 :0 112,34 1=3.1 :0 :18 :=3.4
THE NUMBERS IN DESCENDING ORDER ARE:
=+ 18.00

=+ 12,3k

=+ 3.40

=+ 0,00

=+ 0.00

=- 3,k0

T 5.10

=~ 17.50

*

60

Note that to use this program to arrange numbers in ascending order, one need only change
the argument ir. the IF corimand of step 2,10 from A [1] - LARGE to LARGE-ALI].
Student exploration of various methods for ordering numbers will invaricbly lead to dis-
& cussions of the speed and efficiency of each technique. When this occurs, the following algorithm
for ordering N INTEGERS when the minimum and maximum values are known will have particular
appeal, since each numker is examined only once rather than several times as in most methods, A flow-

chart for this algorithm is:

OBTAIN N- THE
LENGTH OF LiST

OBTAIN THE
ELEMENT A

———— —— ——— — Ottt

CONTINUE

The following program is written according to this flowchart:

01.10 TYPE %3.0,"PROGRAM TO ARRANGE N INTEGERS (+- 25) IN"; ERASE
01.20 ASK " ASCENDING ORDER"!!"HOW MANY NUMBERS? " ,N,!
01.30 TYPE "THESE ARE"; FOR I=1,N; ASK " ",A[I); SET T[A[I}]=T{AlI}]H1
01.40 FOR J=-25,25; IF (T[J])) 1.5,1.5; FOR I=1,T[J]; TYPE !,J
01.50 CONTINUE
: 01.60 TYPE !!
*

- 55

ERIC 61

Aruitoxt provided by Eic:

A run of this program appears as:

%Go
PROGRAM 70 ARRANGE N INTEGERS (+- 25) IN ASCENDING ORDER

HOW MANY NUMBER? :30

THESE ARE :-16 :21
16 :0 115 :23

10 1 21 :19

2h

23

17

16 Note: Although the method used is

16 compleiely general, limited memory

15 availability may necessitate restrict-

ing integer ordering to the interval

+25 as in the example.

0 :23 :25 =17 :=2 6 :10
5 19 :12 :-23 :=b 0 :17
~1l5 =2k 1=16 :0

I I I |
o+

I S T N A S
[y
MOV HHOOODOON &0

+ +

+ +

+

L2 TN U ¢ A ¢ A | Y (UL U N U (N | S N O TN O N O D N | 000 1 OO 1 SO T O ¢ 1§

+ +
PPNV
VIWwWWHHFHWYW-IW

ERIC 62

Aruitoxt provided by Eic:

-

O

ERIC

Aruitoxt provided by Eic:

V. NEGATIVE NUMBERS

A, Plotting Equalities ond Inequalities on ihe Number Line

The program shown on pege 10 will plot expressions involving nagative numbers on the nuni-
Lar line, as demonstrated in some of the sample runs. Use of this program might provide additional in-

terest when negative numbers are "introduced" in Algebra I.

Students may be asked to determine which of the programs they have already written and/or
run (union andintersection of sets, ordering, exponents, etc.) will continue to work if negative numbers
are used. The value of such an assignment is, of course, directiy proportional to the nature of the pro-~
grams previously written by the students. Use of such an assignment will also help the teacher to ideri-
tify problems that students might yet be having with earlier topics. For example, if a student has written
a program to type the Nth power of an input number and this program does not work for negative num-

bers, the student probably does not completely understand the definition of exponents.

B. Addition and Subtraction on the Number Line (Using Vector Representation)

A demonstration program to assist a presentation of vector addition is the following: (The

program can be easily altered to peiform vector subtraction).

01.01 C PROGRAM TO ADD TWO NON-ZERO VECTORS WHOSE INDIVIDUAL
01.02 C AND COMBINED MAGNITUDES HAVE INTEGRAL VALUES <= 10.

01.03 ASK "VECTORS TO BE ADDED ARE ",A," AND ",B,!!

01,04 SET S=0; SET E=A; IF (-A) 1.05; SET S=A; SET E=0

01,05 SET V=A; DO 2

01,06 SET S=A; SET E=A+B; IF (-B) 1.07; SET S=A+B; SET E=A

01,07 SET V=B; DO 2

01,08 TYPE " "; FOR I=-10,10; TYPE ", "

01,09 TYPE !"=10 =9 =8 =7 =6 -5 -4 -3 =2 .1 0 1 2 3 4 5 6"
01.10 TYPE " T 8 9 10"1

01.11 SET S=0; SET E=A+B; IF (-(A+B)) 1.12, 1.13; SET S=a+B; SET E=0
01,12 SET V=A+B; DO 2

01.13 TYPE “RESULT IS ",%3.0, A+B,!!; QUIT

02.10 TYPE " "; IF (S+10) 2,2,2.,2; FOR I=-10,S-1; TYPE " "
02,20 IF (V) 2.3; TYPE "-=-"; GOTO 2.}

02,30 TYPE "<--"

02.40 IF (E-S-1) 2.5,2.5; FOR I=5+1,E-1; TYPE "aa-"

02.50 IF (V) 2.6; TYPE ">"t!; GOTO 2.7

02,60 TYPE "-"1

02.70 CONTINUE

#*

57

63

Several rurs of this program are:

Input
*GO \L \p
12

VECTORS TO BE ADDED ARE

.
N
o
-
(o]
\'e]
[
o

~10 =9 -8 -7 =6 =5 =% .3 .2 -1 0 1 2 3
RESULT I& =~ 3

¥GO
VECTORS TO BE ADDED ARE :2 AND :5

.
.
.
.
.
-
-
-
-
<
.
.

“10 =9 -8 -7 6 -5 -k -3 -2 -1 0 1 2 3 & 5 6 7 8 9 10
RESULT IS =+ T

*Go
VECTORS TO BE ADDED ARE :-2 AND

210 .9 -8 -7 6 -5-h_3.2.1 0 1 2 3k 5 6 7 8 910
€ e e 0 e B e e - -
RESULT IS =- T
¥GO
VECTORS TO BE ADDED ARE i:g AND LZ
< ------
_______________ >
=10 =9 -8 -7 =6 -5 -4 mé 21 0 1 2 é 4 ; 6 % 8 é 10

RESULT IS =+ 3

»*

Note that the program types out the vector sum in both vector and numerical form. The description
states that only non-zero vectors whose individual and combined magnitudes have integral values < 10
may be used. There are, however, nc provisions in the program for rejecting illegal values. Actually,
the first vector and the combined magnitudes must have integral values < 10, but the second vector is

not restricted to these values. For example:

58

O

ERIC | 64

Aruitoxt provided by Eic:

N

*GO
VECTORS TO BE ADDED ARL :-4 AND :1h

I 210 =9 B o7 -6 -5 b 3.2 -1 0 1 2 3 b 5 6

" - — . ———— T —— 0 ————— " > —

RESULT IS =+ 10

*

This program can be modified to provide remedial help for students having trouble with this
topic. Such a modificaticn would operate by using the random number function to generate the two
vectors rather than ASKing the user to input them. The two vectors would then be typed using the pre-
sent output formi, but the user would be ASKed for the vector sum rather than just seeing it typed. If he
responded correctly, an appropriate message would be typed. If he responded incorrectly, the correct

vector sum would be typed using the format of the sample program.
An assignment that helps reinforce the topic of vector addition and subtraction, and that has a

great deal of appeal for many students, is the writing of a prog=-m that simulates the following problem:

Consider the pseudo-random walker who, upon leaving school in o somewhat con-
fused state, must attempt to make his way home. When he leaves the school he

faces hcme and is confronted with the following situation:

.~
L SCHOOL, HOME
LAKE T e 0 80 o T @ T ® 8 8 80 I [—I-I
4 [aY [aY [aY [y O
L STEPS THIS WAY— INTO LAKE I H STEPS THIS WAY~ SAFELY HOME
| I J

LENGTH= L LENGTH=H

At every point on his journey, the walker is as likely to step backward as he is to

step forward. Your program should ASK for L, H, and T (the total number of trips
i from school to a final destination), then simulate each of the walker's journeys.

The output should contain the total number of steps taken and the ultimate destin-

ation for each trip.

{)
i

5
4 ¢

- 59

O

219 65

Aruitoxt provided by Eic:

A student written solution to this problem is:

01.10 ASK "RANDOM WALKER HOME IN ",H," STEPS AND INTO LAKE IN ",L
01.20 ASK ™ STEPS."!"HOW MANY TRIPS SHALL HE MAKE? ",T,!! ‘
01.30 FOK I=1,T; SET COUNT=0; SET PLACE=0; DO 2

01.%0 QUIT

02.10 TYPE "TRIP NUMBER ",%4,n,I,I"STEPS ARE: "

02.20 SET STEP=FRAN{); SET COUNT=COUNT+1

02.3. IF (STEP) 2.4,2,4; SET PLACE=PLACE+l; TYPE "H"; GOTO 2.5
02,40 SET PLACE=PLACE-1: TYPE "L"

02,50 IF (H~PLACE) 2,6, 2.8, 2.6

02,60 IF (L+PLACE) 2.2, 2.7, 2.2

02.70 TYPE !"DUNKED IN ",COUNT, " STEPS."!!; RETURN

02.80 TYPE !"SAFELY HOME IN “,COUNT, " STEPS."!!; RETURN

*

A run of this program appears as:

*GO
RANDOM WALKER HOME IN :5 STEPS AND INTO LAKE IN :5 STEPS.
HOW MANY TRIPS SHALL HE MAKE? :k

TRIF NUMBER =+ 1l
STEPS ARE: LHLHHHHLHHLLLLLHLLLHHHHHHLHHH
SAFELY HOME IN =+ 29 STEPS,

TRIP NUMBER =+ 2
STEPS ARE: HHLLHHLLHHLLHLHHHHLHH
SAFELY HOME IN =+ 21 STEPS.

TRIP NUMBER =+ 3
STEPS ARE: LHLHLHHLLHHLLLLHLLHHHHLHLLLHHLLLHLL
DUNKED IN =+ 35 STEPS.

TRIP NUMBER =+ b
STEPS ARE: HLHHLLEHHHH
SAFELY HOME IN =+ 11 STEPS,

*

Note that this program types out each step as well as all the information requested in the problem.
Students working on this problem are often discovered asking questions about probability.

They are quite naturally interested in the "average" number of steps expected after several trips, the

chances of exactly L or H steps in a single trip, etc. These questions become even more interesting

if the numbers L and M are not alike. For example:

60

ERIC 66

Aruitoxt provided by Eic:

*Go
RANDOM WALKER HOME IN :6 STEES AND INTO LAKE IN :4 3TEPS,

HOW MANY TRIPS SHALL HE MAKE? :3

o TRIP NUMBER =+ 1
STEPS ARE: LHLHLHHHLHHHHLLLHHLLHHLLLHHHHLHLLLHLHHLLHLHLLLHULHHHHLHHH

SAFELY HOME IN =+ 56 STEPS.

TRIP NJUMBER =+ 2
STEPS ARE: LHLLHLHHLLLL
DUNKED IN =+ 12 STEPS.

TRIP NUMEZR =+ 3
STEPS ARE: LHLHHLLLHHLLHLLHHLLL
DUNKED IN =+ 20 STEPS.

*

Trip number 1 of this example suggests c problem which thisistudent's program did not anticipate - if
more than 60 steps are taken, the &1st and all remaining steps will be typed in the same position. This
problem can be eliminated by adding the step: 2.25 IF (COUNT-61) 2.3; TYPE !

This program is also an excellent vehicle for introducing the important concept of simulation.
Students should be encouraged to determine empirical probakilities cfter simulation of 100 or more trips
of the random walker. This will help in demonstrating the real value of using the computer to zimulate

real, more compiex problems.

. NOTE

The use of the random function in this example ~
<= 0 means step backward and >0 means step for-
ward - will produce satisfactory results if 100 or
more runs are used.

C. Absolute Value, Operations with Negative Numbers, and More Theorems for

Solving Equations

Classroom use has shown that the very short assignment of writing a pregram which will ASK
for a number and then type out the absolute value of that number will benefit most students being intro-

duced to absolute value. Such a program, with two sample runs, is:

01.10 ASK "THE ABSOLUTE VALUE OF " ,x," Is "
01.20 IF (X) 1.3; TYPE %6.02,X,!t; QUIT
01.30 TYPE %6,02,-X,1!

*

61

ERIC 7

Aruitoxt provided by Eic:

E

%¥Go
THE ABSOLUTE VALUE OF :5.23 IS =+ 5.23

%60
T%E ABSOLUTE VALUE OF :-T7.1 IS =+ 7.10

*

Although the definition of absolute value seems quite easy, not all students will correctly write this
program. An incorrect program probably reflects a misunderstanding of the real meaning of a variable.
Thus, students writing invalid prograrﬁs are most likely in need of individual help.

Programs to assist in the presentation of techniques for addition and subtraction using negative
numbers were shown in the previous section of this chapter. To assist in the presentation of techniques
for multiplication and division using negative numters, one might use the following demonstration pro-

gram:

01.10 ASK ?A?,? B?,!

01.20 TYPE %6.02,7A%B 72,1,2(=A)*B 2,1,72A%(-B) 2,1,2(-A)*(-B)?2,!
* i
*G0
A:3 B:h
A%*B =+ 12,00
(-A)*B =21 12,00
A*(-B) == 12,00
(-A)*(-B)=+ 12.00
»*

l
*G0 !
A:=-2 B:6 '
A*B =~ 12,00
(-A)%B =+ 12,00
A*(-B) =+ 12,00

(-A)*(-B)== 12.00
*

The results of this simple p‘(ograu.\ will not be obvious to all beginning students. An understanding that
-A*B is not always a negcf‘ive number requires a confident grasp of the real meaning of a variable.
Thus, this program provides'énofher means of diszovering any misunderstandings on the part of the in-
dividual student. An assignmsent that might provide a student with some surprise is that of writing a
program whicl. ASKs for two numbers, and then ASKs for the four products which were typed in the pre=
vious example. If the user res:'Ponds with a correct product, the next product is ASKed. If the user

responds with an incorrect product, this product is ASKed again. An example of such a program and

two sample runs is:

62

O

RIC 68

Aruitoxt provided by Eic:

FAS

(

O

ERIC

Aruitoxt provided by Eic:

01.10 ASK ?A7,7 B?7,!

01,20 ASK !"A¥*B= ",ANS; IF (ANS-(A¥*B)) 1,2,1.3,1.2

C1.30 ASK !"(=A)*B= ",ANS; IF (ANS-((-A)*B)) 1.,3,1.k4,1.3
01.40 ASK !"A¥(-B)= ", ANS; IF (ANS-(A*(-B))) 1.4,1.5,1.bk
01.50 ASK !"(-A)*#(-B)=",ANS; IF (ANS-((-A)*(-B))) 1.5,1.6,1.5

01.60 TYPE 1!!; QUIT
*

*GOo

A:3 B:-4
A¥B= :=12
(-A)#*B= :12
A¥(-B)= :12

(-p)*(-B)=-12

*GOo

A:-2 B:-5
A¥B= :=10
A¥B= :10
(-A)¥*B= :=19
A¥(-B)= :10
A¥(-B)= ;=10

(-A)*(-B)=:10

*

The surprise that may occul is that a student, using his own program, will discover that this program is
correcting some of his own mathematics. This technique provides an effective means of prevoking in-
dividual thought by students who have some uneasiness concerning the use of variables.

When proving and using elementary theorems invoiving negative numbers and absolute value
to solve simple equations, many of the program: shown in Section Ill can be utilized with no charge.

For example, consider the programs for: verifying the commutative, associative, and distrikutive proper-
ties (page 37); finding additive and multiplicative inverse (page 38); verifying the property of closure
(page 39); checking the validity of proposed theormes (page 45); the step-by-step solution of simple
equations (page 46); and solving simple equations (paga 49).

These programs can all be used or assigned in exactly the manner already presented. However,
rather than use these programs a second time, students will gain more if the assignments appear somewhat
different. This can probably be done easily, as ciass time usually dees not permit the use. of <!l the
differeiir programs already suggested by the time the topics in this section are reached. The teacher
should not overlook the possibility of now assigning students the task of writing a program that was earlier
usec for demonstration. The computer is most useful as a teaching aid when students write their own

programs, and thus, repeating a particular topic in this manner is quite beneficial.

63

69

When using negative numbers and aksolute value, one bagins to enzounter several thecrems
which are true only with restricted values for the variables. For example, corsider:

(1) atb= = (a}+|b}); valid if a <0 and b <0

(2) atb=|a]~|k|; valid if >0, b<0, and |a| >|b]

(3) atb= |a]+[b|; validifa>0and b >0
Such theorems can be simply stated for the class as propositions, the assignment being to determine the
special conditions under which they are valid. If this is done, be sure to include at least one proposi-
tion such as [a| + [b] < |a + b[which is never true. If students have not previously had an opportunity
for attacking a preblem involving the computer in their own way (i.e., without a specific program sug~
gested), this is a good iime to start. Thus the complete assignment is: "Determine the conditions under
whicn a given proposition is valid, using the computer to assist you in any way you choose." Classroom
experience with this type of assignment has shown that the numnber of students who have previously writ-
ten programs for the computer is inversely proportional to the number of students who will seek computer
assistance in completing the assignment. There are several possible positive reasons for this relationship.
First, the students may have indirectly learned how to appreach this problem as a result of previous pro-
gramming experience. Second, the students might recognize the few cases that need to be tried - pre-
vious programming experience does assist this recognition - and not bother with the computer for the
simple arithmetic required. Finally, -better students will have already done problems similar to this
while working on earlier program«.

Slower students might enjoy ihe problem of writing expressions such as A-B-C using as many
different arrangements of parentheses as possible without using more than one pair for the same purpse.

(This assignment is not very challenging for better students.) Several possible solutions are:

¥SET A=1; SET B=2; SET C=b
*TYPE %4.0, A-B-C,!

*TYPE A+(-B)+(=C),!
;EYPESA-(B+C),1
3EYPE5<<A+<-B))+<-c)),:

*

A%

A challenging assignment for average or better students is the writing of a program which
will reduce a given expression to the form P=X+Q. The technique required is similar to that shown in

the program on page 49 which would solve a first-degree equation. The program appears as:

ERIC | 70

Aruitoxt provided by Eic:

iy

ERIC

Aruitoxt provided by Eic:

01.10 SET X=0; DO 2; SET Q=EXP

01.20 SET X=1j; DO 2; S&r P=EXP-Q

01.30 TYPE "REDUCED EXPRESSION IS IN THE FORM P#*X + Q, WHERE:"!,6%6,02
01,40 TYPE 7P 7,1,7Q ?,!!

#*

The output from two runs of this program fis:

#2.,1 SET EXP=3+L¥X-6+5%X

*Go

REDUCED EXPRESSION IS IN THE FOP't P¥X + @, WHERE:
P =+ 9,00

Q == 3,00

#2 .1 SET EXP=T*X+12-3%X+L,5-3,25+4,5%X

*Go

REDUCED EXPRESSION IS IN THE FORM P¥*X + Q, WHERE:
P =+ 8.50

Q =+ 13,25

*

An effective approach to this problem is to make the assignment with no suggestion as to how to solve
the problem. This requires the student to find a general approach to the problem that is unlike the many
problems he has discussed in class. An understanding of the method of solution also helps develop <~
intuitive feeling for the idea of a function. This same program could be modified easily for use in giving
extra practice for those studernis having trouble evaluating expressions. Such a modificatiors might ASK

the student for his answer for a given value of x and then give an immediate appraisa! of this answer.

D. Addition and Subtraction of Binary Numbrrs Using Comp!sment A:ithmetic (Supplementary)

Although treated in a different manner, the topic of negative numbers is not new to students
of Algebra I, A short lesson on addition and subtraction using complement arithmetic is, however, new
material for clmost all students and has proven to be an excellent motivaiional device. Since many
computers actually execute these operations using complement arithmatic, the example of binary numbers
is quite natural,

The following program is suitable for use as a demonstration, but the main reason for including
it in this text is to provide an example of several programming techniques. In its entirety it would be

too difficult to assign to students in Algebra I, but isolated portions of it provide excellent exercises.

The pregram is:

65

71

01.01 E
01.10 A "THE BINARY NUMBERS ARE ",A," AND " ,B,!
01.11 A "THE OPERATION IS PLUS OR MINUS? ", oP,!
01.20 F I=1,6;D 2
01.21 T %2.0,"THE PROBLEM IS:"tt" ".P I=1,63T A[T7-I]
01.22 IF (2000-0P) 1,23;T !"PLUS ";GOTO 1.2k
01.23 T 1"MINUS
01.2k F I=1,6;T B[7-1I]
01.30 IF (2000-0P) 1,31,1.4,1.4
01,31 F I=1,6;5 B[7-I]=FABs(B{7-I]-1)
01.32 T !!1"USING THE COMPLEMENT OF B, THIS PROBLEM BECOMES:"
01,33 T 11" WP I=1,6;T A[T-I]
01,34 T 1"PLUS ".F I=1,63T B{T-I]
01.40 F I=1,T7;D 3
01,45 T t3F I=1,35;T """
0l.46 T 1"EQUALS "-“ I=1,7;T S[8-I]
01,50 IF (2000-0P) 1.51;T !1!;Q
01.51 F I=1,6;S A[I]=0; B{Il=s[I];s s[I]=0;s5 cl(1]=0
01.52 S A[1])=S[7];F I=1,6;D 3
01.53 T !'1"USING THE END AROUND CARRY, THE ANSWER"!!
01.54 T “"EGUALS ".F I=1,6;T S[7- I]
01.55 T 1!1;Q
02,10 8 A[7-I]=FITR{A/104+(6=I),35 A=A-A[T-I1*10+(6-1)
02,20 S B{7-I]=FITR{B/104(6~I));5S B=B=-B[7-I1%104(6-I)
03.10 s s[Il=Al1]l+Bl1I]l+cC[1]
03.20 IF (s{1]-2) 3.3,3.25,3.3
03.25 s 5[1]=0;5 cl1+1]=1
03,30 IF (s{r}-3) 3.4,2,35,3.L
03.35 s s[1l=1;s cli+l]=1
03.40 ¢
*
NOTE

Abbreviated commands are necessary when using

the 4K version of FOCAL,

The program will add and subtract two six-digit binary numbers. Complement arithmetic is used for

subtraction, and the major steps required to attain the solution are typed out. The output frem two

vuns of this program is:

O

ERIC

Aruitoxt provided by Eic:

*Go
THE BINARY NUMBERS ARE :101101 AND :110101
THE OPERATION IS PLUS OR MINUS? :PLUS

THE PROBLEM IS:

EQUALS =+ l=+ 1 + 0=+ 0=+ Q0=+ 1=+ 0

66

72

#G0
TiIE BINARY NUMBERS ARE :111010 AND :10011l
THE OPERATION IS PLUS OR MINUS? :MINUS

THE PROBLEM 1IS:
+ 1
+ 1

=+ 1=+ l=+ 0=+ 1=+ 0
=+ 0=+ 0=+ 1=+ 1=+ 1

+ =
MINUS + 0=

USING THE COMPLEMENT OF B, THIS PROBLEM BECOMES:

EQUALS =+ l=+ 0=+ l=+ 0=+ 0=+ 1l=+ O
USING THE END AROUND CARRY, THE ANSWER

EQUALS =+ O=+ 1=+ O=+ O=+ l=+ 1

A very basic flowchart for this program is:

- Note: This program does not check
on reliability of input data. A and

ASK_FOR BINARY B must be positive binary numbers
NUMBERS A AND B » . . Py
ANO' THE OPERATION expressible in six digits. If the

) operation is MINUS, then A>B is

alse required.
OETERMINE THE VALUE
OF THE INTEGER
IN EACH OF THE 6
POSITIONS IN THE
NUMBERS A ANO B

STEP 1.2 ANO
4~ paRT 2

TYPEOUT A &—STEPS 21-1.24
RESTATEMENT
OF _PROBLEM

MINUS
STEP 1.3t

STEP 1.4 ANO

PART 3
\

DETERMINE THE
COMPLEMENT OF B

PERFORM BINARY
ADOITION OF A AND B

STEP 1.45-
1.96

TYPEOUT NEW)

FORMULATION T~—a| TYPEOUT BINARY SUM

OF PF.OBLEM

STEPS 1.32-

134 STEPS 151~
1.52 AND PERFORM “ENO
PART 3— ™| AROUNO CARRY"

ERIC 73

Aruitoxt provided by Eic:

[xcluding the various typeout formats, there are four distinct sections of this program that might be used

as separate assignments. These are:

1. Determining the integral value of each position in the numbers A and B. When FOCAL
ASKs for 4, the six~digit number which is entered is really accepted as a base 10
number. Thus, to perform binary operations on it, each digit must be isolated. (This
problem ozcurs several times in many types of problems.) This program uses subscripts as:

A= m A5 AT A3 AZ AT
and similarly for B. The necessity of facing this proolem can be avoided by altering
the program so that each digit of A and B is ASKed for separately.

2. Performing the binary addition of two numbers. The students must here realize that
FOCAL is computing in base 10, thus 14 1= 2 will have to be converted to 1+ 1=0
with a "carry" of 1. Similarly 1+ 1+ 1 (carried) = 3 will have to be converted to
1+ 141 (carried) = 1 with a "carry" of 1.

3. Performing the "end-around carry" this is mainly a problem of determining how to set
up the initial conditions. This program resats the numbers A and B to represent the
"and~around carry", then uses the same part of the progrom that was written for binary
addition of A and B,

4, Determining the complement of a binary number. Students should be encouraged to use
the absolute value fuinction in their solution rather than the obvious sequence

IF (ALIl) g, o; SET A L1] = 0; GOTO
a SETA 1] =1
B.ae

Although this sequence is perfectly valid, it becomes quite unwieldl, if the 9's comple-
ment is being sought, while the method shown in the program (step 1.31) works equally
well if a 9 replaces the 1 in the argument of the absolute value function.

Once again, this program in its entirety is a very dii“icult, time consuming assignment for students in
the early stages of Algebra I, but any one of the four suggested subprograms is quite reasonable and
beneficial. Interesting results can often be attained by assigning each of these subprograms to different
groups within the class, then combining the better programs from various groups into one larger program
similar to that givei. in the example.

The topic, using complements to perform subtraction, is also of interest to more advanced
students. A complete o oof of why the method works is a worthwhile task for students of Algebra II.
In courses of Algebra I through Algebra 111, classroom. experience with this topic has been very reward=
ing when the techniques for adding and subtracting, using comnlement arithmetic, were presented only
for binary numbers. In all cases, the majority of students sought and discovered a way of performing
similar operations in base 10 (i.e., using the 9's complement) and many extended this to other bases
as well, Many students of Algebra Il were also able to discover methods for handling the case where

A<= B and cases where A and/or B were negative numbers.

68

74

R

V. SOLVING FIRST-DEGREE EQUATIONS AND INEQUALITIES

A, Solving Inequalities

A program, which solves simple equations and then types each step of the solution is shown
on page 50, Having students write a similar program which solves inequalities and types each step of
the solution is a very good exercise. For better students, the problem can simply be assigned as stated.
Average students will have to tackle the main problems of such an assignment if the program on page 50

is given to them and they are asked to modify the program so that it works for inequalities. One such

modification is:

01.01 S GR=1;S LE=-1;T %6,03;S B=0;FOR X=0,1;D0 2;5 LS(X]=L;S RS[X]=R
01,02 SET SX=RS[1]-RS[0];SET cx=Ls[1]-Ls[oi-sx;TYPE "TO BOTH SIDES:",!
01.03 IF (SX) 1,04,1,05;TYPE "SUBTRACT ".,SX,"#X",!;SET B=B-1;G0TO0 1,05
01.04 TYPE "ADD ",-SX,"*¥X"!; SET B=B-l
01.05 IF (Ls[0]) 1.,06,1,07;TYPE "SUBTRACT ",LsS[0],!;SET B=B~1;G0TO 1.07
01,06 TYPE "ADD ",-Lsfo],z;sET B=B-1 : s -
01.07 IF (CX-1) 1.08,1.11,1.08

01.08 IF (FABS(CX)-1) 1.09,1,09;TYPE "DIVIDE BY " ,CX,!;GOTO 1.10

01.09 TYPE "MULTIPLY BY ",1/CX,!

01,10 SET B=-5

01,11 IF (B) 1,12;TYPE "DO NOTHING",!

01,12 TYPE "THE SOLUTION IS X "; IF (B+4) 1,13,1.,13,1.14

01,13 IF (-CX) 1l.1lL; SET INEQ=-INEQ

01.14 IF (INEQ) 1.15; TYPE "> ™; GOTO 1.16

01,15 TYPE "< "

01.16 TYPE (Rs[0]-Ls[0])/cx,1!

The operation of this program is identical to thar of the program on page 50. The output of three runs

of the program is:

*#2,1 SET L=X+5; SET INEQ=LE; SET R=3*X.3

*Go

TO BOTH SIDES: solving
SUBTRACT =+ 3,000%X

SUBTRACT =+ 5.000 x+5<3x~3
DIVIDE BY =- 2,000

T:HE SOLUTION IS X > =+ 4,000

#2,1 SET L=b®*X-3; SET INEQ=LE; SET R=k+2#)

*Go .
TO0 BOTH SIDES: solving
SUBTRACT =+ 2,000%X 4y =3 <4+ 2x

ADD =+ 3,000
DIVIDE BY =+ 2.000
THE SOLUTION IS X < =+ 3,500

69

ERIC s

Aruitoxt provided by Eic:

#2,1 SET L=2%X+3; SET INEQ=GR; SET R=3%¥%X-2

*Go
‘ \ solving

TO BOTH SIDES:

SUBTRACT =+ 3.000%X N -9
SUBTRACT =+ 3.000 2x+3>3x
MULTIPLY BY =— 1.000

THE SOLUTION IS X < =+ 5,000

*

Certainly the students who can write a similar program fully understand the techniques used in solving
simple inequalities.

Note that when modifying the program on page 50, very few changes are necessary. LE = -1
and GR = 1 are SET in the first step, SET B = -5 replaces step 1.10, and steps 1.11 through 1.16 are
all used for typing the solution. This emphasizes the point that the steps used in solving inequalities
are identical fo those used in solving equations, with the exception of reversing the sense of the in-
equal ity sign when multiplying or dividing by a negative number.

In addition to being a good program for use as a student assignment, this program is also
useful for demonstrations. It might also be modified in several different ways to provide extra practice
for students having trouble with this topic. An easily made modification is to have the program type
the steps of the solution as it already does, but then ASK rather than type the final result. This would
supply students with the correct steps for solution but still require them to execute these steps. The
program could then confirm or correct the studert's sclution. Yet another useful variation would be
a prograin that ASKed for each of the steps of the sclution, confirming or denying each step as the
student responds.

Another problem that can be effectively used as an assignment is the writing of a program
to identify equivalent inequalities. One approach to the solution of the problem is to utilize a tech-
nique similar to that of the previous program to actually solve both inequalities and then compare the
results. (The very short program on page 49, used for solving equations, is an excellent start on this
program.) A second approach is to verify the equivalence of the two irequalities over an ASKed inter-
val without actuclly solving the inequalities.

No sample program has been included using the first approach, as this would be quite similar

to previous programs. A flow chart for a program using the second approach appears as:

70

ERIC 76

Aruitoxt provided by Eic:

I‘YJ

ERIC

Aruitoxt provided by Eic:

FOR
% BEG, INC, END

2.70

(STARY)
1.20

INITIAL VARIABLES
VALID = t G0
INVALID +@ L

<&— G represents >, < .

130-135

INPUT INTERVAL
TO BE CHECKED

«<— from BEG to END incrementing by INC.

“eiez)

EVALUATE BOTH é}"’
I

SIDES OF EACH
230-2.35 |

use L1 = left side, S1=sign (G or L), and R1=right side.
Similarly for 2nd ineguality

INEQUALITY

if sign is >, inferchange L1 and R1.

240-246
DETERMIME VALIDITY
OF EACH

SET Al cnd A2 equal to VALID or INVALID.

INEQUALITY

1]

I

I

I

|
I INEQUALITY SIGNS<
|

I

[

'

I

!

1.56-1.60

INEQUALITIES ARE
NOT EQUIVALENT

AT PRESENT VALUE
OF X

THE INEQUALITIES

ARE EQUIVALENT

FOR ALL VALUES
CHECKED

: I

This program appears as:

01,10
01,20
01, 30
01,35
01.k40
01,50
01.60

02,30
02,35
02,40
02,43
02,46
02,50
02,60
02,70
*

¢ PROGRAM TO IDENTIFY EQUIVALENT INEQUALITIES

SET VALID=1; SET NOTVALID=0; SET G=0; SET L=-1

ASK "INTERVAL TO CHECK IS FROM " ,BEG," TO ",END

ASK " INCREMENTING BY ",INC,!

FOR X=BEG,INC,£ND; DO 2

TYPE "THE INEQUALITIES ARE EQUIVALENT FOR ALL OF THE VALUES"
TYPE !"CHECKED IN THE INTERVAL,"!l; QUIT

IF (S1) 2,35; SET T=Ll; SET Ll=Rl; SET R1=T

IF (s2) 2.4; SET T=L2; SET L2=R2; SET R2=T

SET Al=VALID; SET A2=VALID

IF (L1-Rl1) 2,463 SET Al=NOTVALID

IF (L2-R2) 2.5; SET A2=NOTVALID

IF (Al-A2) 2.7,2.6,2.7

RETURN

TYPE "INEQUALITIES NOT EQUIVALENT WHEN X" ,%6.02,X,!!; QUIT

Following is the output of two runs of this program. In the first run, the inequalities checked are

x+ 5<3x - 3and 2¢+ 9 > 21 - x, while in the second run they are 2x + 9 >14 - x and x + § <2x - 3.

71

77

#2,1 SET L1=X+5; SET Si=L; SET R1=3%X-3

#2,2 SET L2=2%X+9; SET S2=G; SET R2=21-X

*Go

INTERVAL TO CHECK IS FROM :-5 TO :20 INCREMENTING BY :.25
THE INEQUALITIES ARE EQUIVALENT FOR ALL OF THE VALUES
CHECKED IN THE INTERVAL,

#2,1 SET L1=2%X+9; SET S1=G; SET Rl=1k-X

#2,2 SET L2=X+5; SET S2=L; SET R2=2%X-3

%GO

INTERVAL TO CEECK IS FROM :-10 TO :15 INCREMENTING BY :.5
INEQUALITIES NOT EQUIVALENT WHEN X=+ 2,00

*

A common student error when using the approach exemplified by this program is to label a
pair of inequalities as not equivalznt because both are riot valid for a given number. This error
reflects a basic misunderstanding of the meaning of equivalence, which is not always uncovered if only
the first approach to the solution is considered.

Pairs of inequalities can be plotted on the number line by using a program similar to that

shown on page 10, Such a proyram appears as:

01,10 TYPE 1"USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:"f1t" ¢
01.20 FOR X=-8,.25,8; DO 2

01.30 TYPE #," "

01.40 FOR X=-8,.25,8; DO 3.

01.50 TYPE !"-8 -7 =6 =5 -4 -3 -2 -1 0 1 2 3 L4 5"
01,60 TYPE " 6 T 8M"1ll; QUIT

02,90 TYPE ","; CONTINUE

03,90 TYPE " ", CONTINUE

04L.90 TYPE "\"; CONTINUE

"o <\ is used to plot one inequality
85. 50 TYPE "/%; CONTINUE and / is used for the other.

The output of a run of the program is:

*GOo
USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

-8 -7 -6 -5 -4 -3 -2 -1 o0 1 2 3 4 5 6 T B

"
This is correct, since no conditions of inequality were given.

72

O

ERIC .78

Aruitoxt provided by Eic:

Inequalities are entered in much the same way as shown on page 10. Basically, parts 2

and 3 are used to define the inequalities to be plotted. For a given value of X, if the first inequality

o5 o

is valid, 4.9 is executed, if it is invalid 2.9 is done. Similarly, for a given value of X, if the second

inequality is valid, the program branches to 5.9, and if it is invalid, a branch is made to 3.9.

In the following run of this program, 5x = 1 <= 9 and x + 3 > 2 are entered and then plotted.

02.10 IF (5%*X-1-9) 4.9, 4.9, 2.9

. 03.10 IF (X+3-2) 3.9, 3.9, 5.9
*GO

USING YCUR CONDITIONS, THE NUMBER LINE APPEARS AS

15T EESTEEEEEEEERERRNNNN xxxxxxxxxxxx/ oy /!/1/1/1/1/1/
8 T -6 5 -k -3 -2 -1 0 1 3 5 T

The output of three more runs of this program is:

02,10 IF {(FABS(X)-1) 4.9, 4.9, 2.9<—|x| <1

03.10 IF (FABS(X)=3) 3.9, 5.9, 5.9<—x| >=3
*GO

i
v USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

IIIIIIIIIIIII;H/HH.......\\\\\\\\\\\......./.’IIIIIIIIIIIIHH/H
-8 -5 -4 .3 -2 -1 0 1 2

02.10 IF (X-4) 4,9, 4,9, 2.9 €— _, -4<=0
03, 20 IF (x 2) 5, 9, 3. 9, 3. 9
» *GO
USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

AL LA L A VA X XXX XX XXX XXX XX XXXXANNANNN NN e o0 oo eonononnnse
-8 -7 -6 «5 -4 -3 <2 <1 0 1 2 3L 5 6 T 8

73

79

02,10 IF (-3-X) 2.2, 2.2, 2.9
02,20 IF (Xx-2) k4,9, 2.9, 2,9 S—" 3<¢=x<?

03,10 IF (5-X) 3.9, 3.
03.20 IF (X) 3.9, 3.9,
*Go

USING YOUR CONDITIONS, THE NUMBER LINE APPEARS AS:

-...s...s...o...s...\\\\ \\\\ \\\\ \xxxxxxxllllllllll(l.......l.....
=8 -7 =6 <5 4 23 -2 -1 1 5 6 7 8

If this program is not given as an assignment, it can be used for demonstration. By presenting
inequalities and having the class write the steps needud to enter them, individuai misunderstandings
might be eliminated. Note that in doing this, students are also getting practice using logical AND/OR

operations.

B. Solving Equations
The solving of literal equations can e reinforced by giving students an equation such as

3C

2A+B"DM

and asking them to write a program which will ASK for all four of the variables. The user skould then
be able to enter numerical values for three of the variables and the word FIND for the fourth. The

program should then type the value of the unknown variable. Such a program would appear as:

01.10 C FORMULA EVALUATION
.01.20 ASK %A 72,7 B 7,27 C 7,7 D 7,!

01.30 IF (A-TOhk) 1,14 s1.31,1.4

01.31 SET A= ((3'c)/(D+h) B)/2; TYPE %8,03,7A7,!!; QUIT
01.40 IF (B-704Y4) 1.5,1.41,1.5

01.41 SET B=(3%C)/(D+h) -2%A; TYPE %8,03,7B?,!1; QUIT
01.50 IF (C-T70LL) 1,6,1.51,1.6

01.51 SET C= ((2'A+B)*(D+b))/3, TYPE %8.03,7C?,!!; QUIT
01 60 SET D=(3%*C)/(2%A+B)-4; TYPE %8,03,7D7?, !!' QUIT

Although the writing of this program involves little more than the conventional paper and pencil task
of solving the equation for each of the variables, classroom experience with the assignment has repeat-
edly given more accurate results when the program is also expected. The output of several runs of this

program is:

74

80

N

N T

O

ERIC

Aruitoxt provided by Eic:

A :2 B :4¢c :8 D :FIND

%GO
A :2 B :4 ¢ :FIND D :-1
C=+ 8.000

¥GO

A :2 B :FINDC :8 D ;-1
B=+ L,000

*Go

A :FIND B :4 C :8 D :-1
A=+ 2.000

*

1f the programs suggested for solving equations, shown on pages 46 through 51, have not all

been used, they are also applicable at this point. The writing of a program similar to that on page 72,

to tell whether or nct two equations have identical solution sets, is also a worthwhile exercise.
Classroom experience with better than average students has demonstrated that the assignment
"Write a program which will allow the user to enter an equation (first degree) and then type out the
solution, " will yield very beneficial results. Students will create, evaluate, ond reject many different
schemes for attacking this problem, and in so doing, will learn some significant mathematical ideas.
The majority of students will, however, need a little more guidance wher writing such a program. In
Section 11, programs were considered which solved an equation with o integral solution within an
ASKed domain. Many students will want to continue this same approach and write a program which
will not require a domain to be entered. (The programs on pages 46 through 51 already do this using a

VERY different approach.)

Following is a program typical of those which students write when attempting this problem:

01,10 SET X=0; DO 2
01.20 SET X=X+l1; DO 2
01,30 SET X=-X; DO 2
01.40 SET X=-X; GOTO 1.2

62,20 IF (L-R) 2.3,2.4,2,3

02,30 RETURN
02.40 TYPE "SOLUTION IS X",%6.02,X,11; QUIT
*

81

The output from two runs of this program is:

#2 .1 SET L=2%X+3; SET R=3%X.2 solves 2x + 3 = 3x -2

*Go

SOLUTION IS X=+ 5.00

#2,1 SET L=3%X+220+42*X; SET R=X~-192 solves 3x + 220+2x = X-192
*Go

SOLUTION IS X=~ 103,00

*

The program does exactly as intended - it gives an integral solution to a first -degree equation without
inputting a domain to search. There are, however, several serious disadvantages to this program which
lec've many students dissatisfied. First, the program is of no use at all if the solution is not integral,

and second, if a root is suspected to be near, for example, -100, there is no way to avoid t:ying ap-
proximately 200 incorrect values before the correct solution is found. Thus there remain several problems
to be overcome before the majority of students are satisfied. Since the students seem to benefit more
when allowed to "discover" as much as possible, the following suggestions for modifications of this

program stould be made as brief as possible if given to the students,

1. Alter the program so that the starting point of the search is ASKed rather than always

starting at zero. This will completely eliminate the second objection mentioned above.

2, Alter the program so that the value used to increment X is ASKed rather than always

being 1. This will allow the program to identify some non=integral solutions.

3. With modifications 1 and 2, the program will only solve an equation with a non=-integral
solution if the input value for the incrament happens to allow X to exactly equal the
solution. To help eliminate this prublem, suggest that the program be altered to cccept
a value of X as the solution if the two sides of the equation differ by no morz than an
ASKed value of "tolarance." This will permit the solution to be found to any degree

of aceuracy desired by sisuply re-running the program with different input values.

A program that incorporates all three of these suggestions is:

76

O

ERIC 82

Aruitoxt provided by Eic:

S’

by

ERIC

Aruitoxt provided by Eic:

0l.10
01.20
01,30
01,40
01.50

02,20
02,30
02,40
*

ASK ?START ?,? INCREMENT ?,?
SET ADD=0; SET X=START; DO 2
SET ADD=ADD+INCREMENT; SET X=START+ADD; DO 2
SET X=START-ADD; DO 2

GOTO 1.3

TOLERANCE ?7,!

IF (FABS(L-R)-TOLERANCE) 2.4,2,4,2,.3
RETURN
TYPE "APPROXIMATE SOLUTION IS X",%6.03,X,!!; QUIT

A complete solution to the equation éx - 5.7 =8 + 2x can be found using this program as

follows:

#2,1 SET L=6
*Go

START :0 I
APPROXIMATE

*Go

START :3 INCREMENT :.5

APPROXIMATE

*Go
START :3.5
APPROXIMATE

*TYPE L,R,!
=+ 15,300=+
"

*Go
START :3.5
APPROXIMATE

*Go
START :3.b
APPROXIMATE

*Go
START :3,L45
APPROXIMATE

*Go
START :3,43
APPROXIMATE

*Go
START :3.U425
APPROXIMATE

*TYPE L,R,!
=+ 14 ,850=+
*

#X-5.7; SET R=8+2%X

TOLERANCE :2
3.000

NCREMENT :1

SOLUTION IS X=+ Note: The result of the

first run is used as START
in the second run, Also,
the increment and toler-

ance are reduced on each
succeeding run.

TOLERANCE :1

SOLUTION IS X=+ 3,500

INCREMENT :.25
SOLUTION IS X=+

TOLERANCE :,5
3.500

Since the solution did not
change, the two sides of
ihe equation were examined
to see if an exact solution
had been found,

15.000 =

TOLERANCE :.25
3.k00

INCREMENT :,1
SOLUTION IS X=+

TOLERANCE :.1
3.450

INCREMENT :,05
SOLUTION IS X=+

TOLERANCE :.05
3.430

INCREMENT :,01
SOLUTION IS X=+

TOLERANCE :.02
3.k25

INCREMENT :.005
SOLUTION IS X=+

INCREMENT :,0001 TOLERAKCE :.001
SOLUTION IS X=+ 3,425
b, <. .
14.850 < Evidently the exact solution
has been found.
77

o 9)
X

i

Certainly this type of program begins to teach the important ideas of iteration and approximation. At
this point the better students might be encotraged to continue work on this program so that it alters the
increment itself until an acceptable solution is found. However, for the majority of students, the in-

troduction of this technique should be postponed until graphs have been discussed.

C. Word Problems

An effective technique for stimulating interest as well as for teaching methods of solving
word problems is to have students write a program which will create and present a problem, ASK the

user to solve the problem, and then verify the user's response. For example, consider the problem:

A car traveling CS (have computer generate an integer 40 through 65)
miles per hour can maka a certain irip in D (have computer generate
an integer 5 through 20) hours less than a train traveling at TS (have
computer generate an integer 20 through 39) miles per hour. How long
does the trip take by car?

The student's program should type out this problem with numbers generated by the random
function appropriately substituted, then ASK for the user's solution to the problem, and then verify this
solution. Note that to verify the user's solution, the student's program must also correctly solve the

problem. A program which does all of this is:

01.10 C DISTANCE, RATE, TIME PROBLEM
01.20 TYPE "A CAR TRAVELING "; SET CS=FITR(FABS(FRAN{)}}#25)+k0
01,21 TYPE %3.0,C5," MILES PER HOUR CAN MAKE A CERTAIN TRIP IN"1
01.22 SET D=FITR(FABS(FRAN())*15)+5;TYPE »," HOURS LESS THAN A"
01.23 TYPE " TRAIN TRAVELING AT ":SEY TS8=FITR(FABS(FRAN())¥19)+20
0l.24 TYPE TS," MILES PER HOUR."!"HOW LONG DOES THE TRIP TAKE BY CAR2"!
01.25 ASK ?ANSWER ?;SET VALUE=D*TS/(CS-TS)

01.26 IF (FABS{ANSWER-VALUE)-.009999) 1.27,1.27,1,28

01.27 TYPE I"CORRECT"11; QUIT

01.28 TYPE I"NOT SO. THE CORRECT VALUE IS ",%6.02,VALUE," HOURS."1!
*

The output from two runs of this program is:

*Go

A CAR TRAVELING =+ 58 MILES PER HOUR CAN MAKE A CERTAIN TRIP IN
=+ 10 HOURS LESS THAN A TRAIN TRAVELING AT =+ 21 MILES PER HOUR.
HOW LONG DOES THE TRIP TAKE BY CAR?

ANSWER :4,.38

NOT S0, THE CORRECT VALUE IS =+ 5,68 HOURS.

78

O

ERIC 4 -

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

*G0

A CAR TRAVELING =+ 55 MILES PER HOUR CAN MAKE A CERTAIN TRIP IN
=+ 9 HOURS LESS THAN A TRAIN TRAVELING AT =+ 20 MILES PER HOUR.,
HOwW LONG DOES THE TRIP TAKE BY CAR?

ANSWER :5.1k

CORRECT

*

If students have not been exposed to the random number function, these numbers might be ASKed rather
than be generated by the computer. Using random numbers is, however, a topic that appeals to the
majority of students, and these should be used unless time does not permit their introduction.

An effective use of this type of problem is to assign one problem from a list of several differ-
ent problems to each student or to small groups of students. Affer the programs are written, students are
directed to check programs written by others. In this way, each student not only fully understands the
type of problem assigned to him, but he also gets practice in solving all of the other types as well. Note
that the student must solve the problem in general in order to write his program. This should give him
more valuable experience than solving two or three similar problems with specific numeric values.

Consider the following mixture problem as a second example:

How many cunces of gold worth GV (generate a number 48 through 52)
dollars per ounce must be packed with S (generate a number 10 through 40)
ounces of silver worth SV (gene-ste a number 2 through 4) dollars per
ounce to produce a package worth TV (generate a number 5 through 35)
dollars per ounce?

A program that presents this problem is:

01,10 C MIXTURE PROBLIM

01,20 TYPE "HOW MANY QUNCES OF GOLD WORWH ",%5.02

01.21 SET GV=FABS(FRAN())*3+48; TYPE GV," DOLLARS PER OUNCE"!
01.22 TYPE “"MUST BE PACKED WITH ";SET S=FABS(FRAN())®*10+30
01,23 TYPE S," OUNCES OF SILVER WORTH ";SET SV=FABS(FRAN())*2+2
01,24 TYPE SV,!"DOLLARS PER OUNCE TO PRODUCE A PACKAGE WORTH"
01,25 SET TV=FABS(FRAN())*3045;TYPE TV," DOLLARS PER OUNCE?"!
01,26 ASK ?ANSWER ?;SET VALUE=S*(TV.SV)/(GV-TV)

01,27 IF (FABS{ANSWER-VALUE)-,009999) 1,28,1.28,1.29

01,28 TYPE !"CORRECT"!!; QUIT

01,29 TYPE 1"NOT S0, THE CORRECT VALUE IS ", VALUE," OUNCES,"!!; QUIT
»

The output from two runs of this program is:

*Go

HOW MANY OUNCES OF GOLD WORTH =+ 50,26 DOLLARS PER OUNCE

MUST BE PACKED WITH =+ 38,00 OUNCES OF SILVER WORTH =+ 2,60

DOLLARS PER OUNCE TO PRODUCE A PACKAGE WORTH=+ 8,16 DOLLARS PER OUNCE?
ANSWER :50,18

NOT SO, THE CORRECT VALUE IS =+ 5,02 OUNCES.

*

80 .

*Go

HOW MANY OUNCES OF GOLD WORTH =+ 49,96 DOLLARS PER OUNCE

MUST BE PACKED WITH =+ 32,50 OUNCES OF SILVER WORTH =+ 3,76

DOLLARS PER OUNCE TO PRODUCE A PACKAGE WORTH=+ 12,62 DOLLARS PER OUNCE?
ANSWER :7.T1

CORRECT

*

Note that in both of the above programs the comparison between the computed result and the user's

inputted result is not a simple IF (ANSWER-VALUE) statement. Instead, the input answer is accepted

as correct if it is the same through two decimal places. With this exception, these are very straight-

forward programs. As a result, the major part of a student's time will be spent on the main purpose of

the assignment, i.e., solving the problem in general.

A third, more difficult example is to solve in general the problem:

If one of two (type complementary or supplementary) angles measures
X (generate a number 1 through 88 if complementary, 1 through 178
if supplementary) degrees (type more or less) than the other, what is
the measure of the smaller angle?

A program that presents this problem is:

01.10 C COMPLEMNTARY AND SUPPLEMENTARY ANGLE PROBLEM

01,20 TYPE "IF ONE OF TWO "; IF (FRAN(}) 1.21,1.21,1.22

01.21 T "SUPPLEMENTARY";S X= FITR(FABS(FRAN())'177)+1 ;S SIG=1;G0TO 1,23
01.22 T "COMPLEMENTARY"-S X=FITR(FABS(FRAN())*87)+1;5 SIG=-~1

01.23 TYPE " ANGLES MEASURES " ,A4.0,X," DEGREES "!

01.24 1F (FRAN()) 1,25,1.25; TYPE "MORE" GOTO 1.26

01.25 TYPE "LESS"

01.26 TYPE " THAN THE OTHER, WHAT IS THE MEASURE OF THE SMALLER ANGLE?"!
01,27 ASK ?7ANSWER ?

01.28 1F (SIG) 1.29; SET SMALLER=90-X/2; GOTO 1,30

01,29 SET SMALLER=l5.X/2

01.30 IF (ANSWER-SMALLER) 1,32,1.31,1.32

01,31 TYPE {"CORRECTI!"!l; QUIT

01,32 TYPE !"NOT SO. THE SMALLER ANGLE CONTAINS ",%5.01,SMALLER

01.33 TYPE " DEGREES."!!; QUIT

[]

The output from two runs of this program is:

O

ERIC

Aruitoxt provided by Eic:

*Go

I7 ONE OF TWO SUPPLEMENTARY ANGLES MEASURES =+ 46 DEGREES
MORE THAN THE OTHER, WHAT IS THE MEASURE OF THE SMALLER ANGLE?
ANSWER 77

NOT S0. THE SMALLER ANGLE CONTAINS =+ 67.0 DEGREES,

#GO

IF ONE OF TWO COMPLEMENTARY ANGLES MEASURES =+ T3 DEGREES
LESS THAN THE OTHER, WHAT IS THE MEASURE OF THE SMALLER ANGLE?
ANSWER :8.5

CORRECT!

*

80

86

~—

This problem requires the student's program to remember which condition, compiementary or
supplementary, was used, and then to adjust the angular measure accordingly. When writing this
program, many students will be surprised when they discover that the conditions "more or less" do not
affect the soluticn. in some cases students may actually treat the two cases separately and not make
this discovery until the two cases are programmed. In either case, the Algebra I students who success=
fully write a program such as this either knew or have learned some techniques of both solving equations

and general problem solving.)
As a final, more challenging example for better students censider the problem:

Find the smallest of N (type 2, 3, or 4) consecutive (type even or odd)
integers whose sum is S (generate a number 16 through 100).

. A program which does this is:

01.10 C CONSECUTIVE INTEGER PROBLEM
01,20 SET N=" ITR{FABS(FRAN())*2,9)+2; TYPE "FIND THE SMALLEST OF "
01,21 TYPE %' .0,N," CONSECUTIVE "; SET EVEN=-1l; SET 0DD=0
01.22 IF (T AN()) 1.23,1.23; SET CK=EVEN; TYPE "EVEN"; GOTO 1.24
01,23 SET CK=0DD; TYPE "ODD"
01.24 SET S=FITR(FABS(FRAN())#*84)<16; TYPE " INTEGERS WHOSE SUM Is "
01.25 TYPE %4.0,5," ."!ANSWER IS (ENTER NONE IF NO SOLUTION) "
01,30 ASK A,!; SET V=S/N=-(N-1)
01.31 IF (FITR(V)-Vv) 1,34,1,32,1,34
01,32 IF (CK) 1.33; IF (FITR(Vv/2)-v/2) 1.4,1.34,1.4
01.33 IF (FITR(V/2)-V/2) 1.34,1.4,1,34
01.34% SET V=156L4; C THIS SETS V=NONE
= 01,40 IF (A-V) 1,k2,1,41,1,42
(01.41 TYPE "“CORRECT"!!; QUIT
o 01,42 IF (Vv-1564) 1,43,1.44,1,43
01.43 TYPE "NOT S0, THE SMALLEST INTEGER IS ",%3.0,V,!!; QUIT
01,44 TYPE "NOT SO, THERE IS NO SOLUTION."!!; QUIT
»

The output of severai runs of this program is:

*

GO

FIND THE SMALLEST OF =+ 2 CONSECUTIVE ODD INTEGERS WHOSE SUM IS =+ 16 .
ANSWER IS (ENTER NKRONE IF NO SOLUTION) :7

. CORRECT
*Go -
. FIND THE SMALLEST OF =+ 4 CONSECUTIVE EVEN INTEGERS WHOSE SUM Is =+ 31,
ANSWER IS (ENTER NONE IF NO SOLUTION) :6
NOT S0, THERE IS NO SOLUTION,
*Go
FIND THE SMALLEST OF =+ 2 CONSECUTIVE EVEN INTRGERS WHOSE SUM IS =+ 22,

ANSWER IS (ENTER NONE IF NO SOLUTION) :12
NOT SO, THE SMALLEST INTEGER 1S =+ 10

81

ERIC 87 -

Aruitoxt provided by Eic:

E

%GO

FIND THE SMALLEST OF =+ 3 CONSECUTIVE ODD INTEGERS WHOSE SUM IS =+ 85,
ANSWER IS (ENTER NONE 1IF NO SOLUTION) :NONE

CORRECT

*Go

FIND THE SMALLEST OF =+ 2 CONSECUTIVE ODD INTEGERS WHOSE SUM IS =+ k0
ANSWER Is (ENTER NONE 1IF NO SOLUTION) :17 '

NOT SO, THE SMALLEST INTEGER IS =+ 19

*

This problem adds the dimension of identifying values for which no solution exists. Once a numerical
answer is computed, the program must verify that it is both integral and even or odd as earlier speci-
fied. For this as well as the three preceding examples, a student must solve the problem in the general
case before writing his program. In finding this general soiution, the student demonstrates that he can
adequately solve the problem for all specific numerical cases. By also having students use programs
written by others, a task they are usually eager to undertake, they receive practic~ vith many different

types of word problems.

D. Magic Squares (Supplementary)

Although basically a frivolous topic, the techniques for construction of magic squares appeal
to many students. This somewhat self-motivating topic can be used to provide an excellent set of ex-

ercises in analytical thought and organization.

Given a square matrix with n elements on a side (order n), a magic
square is formed by arranging the integers 1 through n? so that the
sum of the numbers in every row, column, and diagonol is equal to

1/2 (n3 + n).
Techniques for construction of magic squares are divided into three cases (1) for squares with an odd
number of elements on a side; (2) for squares with x elements on a side where x is divisible by 2, but
not 4; (3) for squares with x elements on a side where x is divisible by 4. A good exercise for students
is to give them a rule for constructing magic squares of an odd order and then to ask them to write a
program which uses this rule to construct squares of an ASKed odd order. The following such rule is

taken from Mathematical Recreations and Essays. by W. W. Rouse Ball; Macmillan and Co.; 1940,

page ‘950

"First, the number 1 is placed in the middle cell of the top row. The successive
numbers are then placed in their natural order in a diagonal line which slopes up-
wards to the right, except that i) when the top row is reached, the next number is
written in the bottom row as if it came immediately above the top row; ii) when the

82

O

88

.

i
i

P

anamaN

el

O

ERIC

Aruitoxt provided by Eic:

right-hand column is reached, the next number is written in the left-hand column,

as if it immediately succeeded the right-hand column; and iii) when a cell which

has been filled up already or when the top right~hand square is reached, the path

of the series drops to the row vertically below it ard then continues to rou:it again. "’

The task of going from this explanation to the following flow chart is a good exercise in

analytical thought.

START
OBTAIN ORDER

LOCATE MIDDLE CELL-TOP ROW

C REPRESENTS COLUMN CsN/2+.5
R REPRESENTS ROW — R= |
D REPRESENTS DIGIT TO BE D=1
PLACED IN SQULRE
ooN2 . . .
~ R et N o - techniques for simulating
double subscripts are ex-
[_ruaceomceimlr.c] | plained in the FOCAL

manual

INCREMENTR B C -
To gatAaIN |— ReR-1
NEXT CELL

NO THIS GELC
BEYOND UPPER

IGHT HAND,
QUAR

Cet ‘ReN

CONTINUE CONTINVE

A student-written flow chart such as this reflects a nicely organized approach to solving the problem.

The following program is written using the algorithm shown in the flow chart.

01,10 ERASE
01,20 ASK "ORDER ",N,!; SET R=1; SET C=N/2+.5

01,30 FOR D=1 ,N42; SET M[R+C*N]=D; DO 2

01,40 FOR R=1,N; TYPE %3.0,!; FOR C=1,N; TYPE M{R+C*N]
01,50 TYPE !1!; QUIT

02,10 SET R=R-1l; SET C=C+l; IF (1-R) 2.4,2,4,2,2
02,20 IF (N-C) 2.3; SET R=N; GOTO 2.6

02,30 SET R=R+2; SET C=C-1l; GOTO 2.6

02,40 I1F (C-N) 2,5,2.5; SET C=1; GOTO 2.6

02,50 IF (M[R+C*N]) 2.6,2.6,2.3

02,60 CONTINUE '

*

83

89

The output of two runs of this program is:

*Go

ORDER :3

=+ 8=+ 1=+ 6

=+ 3=+ 5=+ T

=4+ U=+ G=4 2

*GOo

ORDER :9

+ ll7=+ 58=+ 69=+ 80=+ 1=4 12=+ 23=+ 3h=+ hs
=+ 57=+ 68=+ T9=+ 9=+ ll=+ 22=+ 33=+ bh=+ L6
=+ 6T=+ T8=+ B=+ 10=+ 21=+ 32=+ 43=+ 54=+ 56
=+ T7=+ T=+ 18=+ 20=+ 31=+ U2=+ 53=+ 55=+ 66
=+ 6=+ 17=+ 19=+ 30=+ ll=+ 52=+ 63=+ 65=+ 76
=4 l6=+ 2T=+ 29=+ 4O=4+ 51:=+ 62=4+ 6h=+ 75=+ 5
=+ 26=+ 28=+ 39=+ 50=+ 6l=+ T2=+ Th=+ b=+ 15
=+ 36=+ 38=+ L9=+ 60=+ Tl=+ T3=+ 3=+ lh=+ 25
+ 37=+ 8=+ 59=+ TO=+ Bl=+ 2=+ 13=+ 24=+ 35
»

Using the 4K version of FOCAL, the program shown can only be used for squares of order 3, 5, 7, and 9
even though the algorithm is valid for any odd order square. Note that the program does not reject even

numbers when order ASKed.

Classroom presentations of techniques for generating magic squares have indicated that the
majority of students will benefit by writing a program similar to that shown in the example for odd order
magic squares, buf that the programming for the two types of even order squares frequently requires more
time than is justified by the additional return. The even-order cases are better used as assignments for
a course in computer science or for only the very best students in Algebra I and II.

A problem that lends itself well to teaching analytical thought and flow charting while also
illustrating one type of real~time computer application is charting the logic of a method for controlling
the power supply to a hypothetical city by manipulating seven regular and two reserve generation

stations. The description of such a method is:

If station 1 is overloaded, turn on station 2 unless station 3 is also overioaded.
If so, turn on stations 4 and 5 unless stations 6 and 7 are both overloaded. If so,
turn on both reserves. 1If not, turn on the first reserve if either 6 or 7 is overloaded.
If station 1 is not overloaded and station 3 is, turn on station 2. If not, and

station 6 or 7 is overloaded turn on stations 4 and 5. Otherwise do nothing.

84

9n'

One flow chart which represents this system is:

RSN

START

1S STATION 1\ YES

OVERLOADED
?

IS STATION 3
OVERLOADED
?

1S STATION 3
OVERl-;OADﬂ)

ARE

STATIONS

€ AND 7 BOTH
QVER

[rurn on sTaTion 2| [rurN on sTation 2] "

T
B0TH RESERVES

TURN ON STATIONS
4 AND 5

- If time permits, the students might also write a program which ASKs the initial conditions of each sta-
i:_ : tion (on, off, or overloaded) and then performs the described checking sequence. Such an exercise is

useful in developing programming skills as well as making the checking of student algorithms an easy

process.

85

ERIC 91

Aruitoxt provided by Eic:

- ok,20
0ok, 30
olb.ko
ok, ks
okh,50
oL,60
ok,70
*

V1. OPRERATHNG WITH POLYNOMIALS
R A A, Addition and Subtraction
i
The operations of addition and subtraction with polynomials are usually completely under-
stood by most students without much difficulty, thus the presentation of this topic will require little or
- no computer assistance. The following program, however, might be used in several ways; as a demon-
stration program for the entire class; to provide drill work for students having difficulty; or, as a problem
. which better siudents are asked to program. This program uses the random function to generate problems
involving polynomial addition and subtraction for the user to solve. The gioblems are generated in the
following format:
(+ +...) PLUSORMINUS (+ +.,4)
1 to 4 terms 1to 4 terms
. ~E
Each term is Cx
where C is an integer 1 through 50
E is an integer O through 4
The program is:
01.10 ERASE
~ 01,20 T %3.0,"PROBLEM IS:"!;S SG=1;D0 2
{'} 01.30 IF (FRAN()) 1.313T "PLUS ";GOTO 1.k
e 01.31 T "MiINUS ";S SG=-l
01,40 DO 2
01,50 T !I1"ENTER COEFFICIENT FOR EACH TERM";FOR E=0,L4;DO 4
0L.60 IF (OK) 1.7;T !"CORRECT"!!;QUIT
01,79 T 1"THESE ARE NOT ALL CORRECT. WANT TO TRY AGAIN? (YES OR NO)"
01..80 A R;S 0K=0;IF (R-155) 1,5,1.9,1.5
01,90 T 11;QUIT
02,10 T "(";S T=FITR(FABS(FRAN())#*3)+2;FOR I=1,T;00 3
o2,20T ") "
03.10 S C=FITR(FRAN()*L9)+1;s E=0;T %3,0,C;IF (FRAN()) 3.2,3.4,3.4
03.20 T "#X";S E= FITR(FABS(FBAN())P3 9)+1;IF (1-E) 3,3,3.4,3.h
. 03,30 T "4",%1.0,E," "
03.40 S TERM[E)= TERM[E]+C'SG ;8 P[E]=1
ok,10 1F (P[E]) L.,2,4,7,4k,2

IF (E) k.4, 4,3,4. 4

A
T

A

IF (A[E])-TERM

s

!"CONSTANT TERM IS " A[E];coTO U,5
I1"COEF, OF X“:IF (E-l) L, hs L,45;T "4" ,%1,0,E
" PERM IS ",AlE]
[E)) 4.6,4.7,4.7
OK=~1

CONTINUE

87

92

E

The output of two runs of this program is:

*Go
PROBLEM IS:
=a L5*Xt=4Lh =o 26®X=- 1¥X4=+3)} MINUS (=~ 26%X=- 3L4%X=. 15)

ENTER COEFFICIENT FOR EACH TERM

CONSTANT TERM IS :15

COEF. OF X TERM IS :-52

COEF., OF X+=+3 TERM IS :1

COEF. OF X+=+4 TERM IS :-45

THESE ARE NOT ALL CORRECT. WANT TO TRY AGAIN? (YES OR NO):YES

ENTER COEFFICIENT FOR EACH TERM
CONSTANT TERM IS :15

COEF. OF X TERM IS :34

COEF, OF X+=+3 TERM IS :1

COEF. OF X#=+4 TERM IS :-L5
CORRECT

*
*Go

PROBLEM IS:
(=+ 16%X+=+3 =+ 1) PLUS {(=+ 1=+ 1T*X4=43 =+ L2=¢ 17%X4=+2)

ENTER COEFFICIENT FOR EACH TERM
CONSTANT TERM IS :4l

CCEF. OF X4=+3 TERM IS :°1
CORRECT

*

When this program is used as on assignment for better students, they gain practice in anticipating all
cases as well as in genera! problem solving since they must devise a schems for presenting the problem,
solving the problem ard then checking the user's solution as well. Note that the program as shown may
occasionally not have enough space to type an entire problem on a single line. This occurs so infre-
quently, however, that no provisions were made to prevent the resulting over typing in the rightmost

print position,

B. Multiplication

*.
The theorems used in raising a monomial to a power ((x*y)z=xz.yz and (xy)z=xy z

can be demonstrated and/or reinforced in several ways. A very brief program for either demonstration
or use as a student assignment is the following:
01.10 ASK ?X 7,7 Y 7,7 2 17,

!
01,20 TYPE %,12(X%*Y)42 2,17(X4Z)%*(Y+2) 2,11
01.30 TYPE 2{X+Y)+Z ?,l?x+z!'z) 7,1!
»

O

ERIC 93

A run of this program is:

*GO
z X:3 Y :5 2 :7

(x®y)+z =+0,170859E+09
(X+z)#{Y42) =+0,1T70859E+09

(XtY)+2 =+0.500315E+17
X+(Y*2Z) =+0.500315E+17

*

Such a trivial program as this should be used with slower students, Experience indicates that the act
of writing out the two theorems and then seeing them typed several times does reinforce their learning.

A somewhat more challenging student assignment is that of writing a program which ASKs

for X, Y, and Z and then computes (X *Y)™ and (XY)Z without using the t operator. In writing such

a program, the students demonstrate not only an understanding of the theorems involved but also
reinforce their understanding of the meaning of exponents. A typical student program for this assign-

ment appears as:

01.10 ASK ?X 7,7 Y 7,7 Z 7.°
01.20 IF {2) 1.3,1.3; IF (#¥ITR(Z)-2Z) 1.,3,1.4,1.3
01.30 TYPE !"Z MUST BE A POSITIVE INTEGER."!!; QUIT
i~ 01.40 SET ANS=1l; FOR COUNT=1l,Z; SET ANS=ANS*(X*Y)
01,50 TYPE %,!"(X*Y)4Z " ANS
01.60 IF (Y) 1.7,1.73 IF (FITR(Y)-Y) 1.7,1.8,1.7
, 01.70 TYPE !"y MUST BE A POSITIVE INTEGER."!!; QUIT
01.80 SET ANS=1l; FOR COUNT=1,Y*Z; SET ANS=ANS*X
01.90 TYPE !"(XtY)4Z " ANS,!!
»

The output of two runs of this program is:

*Go
X :3 Y :5 Z 7

. (X*Y)+Z =+0,170859E+09
(X+Y)+Z =+0,500315E+17

*GO

X :30 Y :50 Z :T70

(X*Y)42Z =+0.212025E+223 Students often comment on how "close" these

(X4Y)42 =+0.706025E+238 €——numbers seem to be. This certainly affords an
' excellent opportunity to discuss magnitude of

» numbers.

O

O

ERIC 94

Aruitoxt provided by Eic:

When being introduced to the multiplication of monomial times polynomial and polynomial

times polynomial, many students will benefit from an assignment to write a program which ASKs for

the variabl

es in an expression like Ax" (Bx™ + C) and then types the expression representing the

product. Such a program is:

01.10
0l.20
01,30
01,40
01.50
#

Following

the produc

0l1l.10
01.20
0l1l.30
01.40
01.50
71,60
01.70
01.80
01,90
»

TYPE "INPUT THE NUMBERS IN THE EXPRESSION A*X4N (B*X4M + C)"!
ASK ?A , N , B , M, C?,!

TYPE !"PRODUCT IS IN THE FORM P¥*X4I + Q*X4J WHERE:"|

SET P=A%B; SET I=M+N; SET Q=A%C; SET J=N

TYPE %6.02,?P 7,7 I 2,172Q 7,7 J 7,11

is the output of a run of this program in which the expression 3x5 (2x4 + 7) is entered and

t 6x9 + 21x5 is typed out.

%50
INPUT THE NUMBERS IN THE EXPRESSION A*X4N (B*X4M + C)
A :3,N:5,B 2 ,M:b 5 c:7T

PRODUCT IS IN THE FORM PH*X4I + Q¥%X4J WHERE:
P =+ 6.00 =+ 9,00
Q =+ 21.00 J =+ 5.00

A similar program for the multiplication of two polynomials, (Axn + B) (me + D), is:

TYPE "INPUT THE NUMBERS IN THE EXPRESSION (A*X4N + B)(C*X4M + D)"1
ASK ?A N,B,C,M, D7,I!

IF (M-N) 1.4,1.7,1.4

TYPE !"PRODUCT IS IN THE FORM P¥*X4I + Q#X4J + R%X4K + S WHERE:"!
SET P=A®C;SET I=M+N;SET QuA*D;SET J=N;SET R=B¥C;SET K=M;SET S=B*D
TYPE %6.02,7P 7,? I 2,12Q 27,7 J ?2,1?7R 7,7 K 72,1728 ?,11;QUIT
TYPE I"PRODUCT IS IN THE FORM P#*X4I + Q®*X4J + R WHERE:"!

SET P=A%#C;SET I=N+M;SET Q=A%D+B*C;SET J=N;SET R=B*D

TYPE %6.02,?P 7,7 I2,12Q 2,7 J ?2,17R 7,11

The output of two runs of this program is:

ERIC

Aruitoxt provided by Eic:

G0
INPUT THE NUMBERS IN THE EXPRESSIOK (A*X4N + B)(C*X4M + D)
A :22 ,N :3,B th s C 33 , M 3, Dl (2x3+4)(3x3_])

PRODUCT IS IN THE FORM P%*X4I + Q%X4J + R WHERE:
P =+ 6,00 I =+ 6,00

Q =+ 10,00 J =+ 3,00

R =« 4,00

‘\ -

*GO
INPUT THE NUMBERS éN THE EXPRESSION (A%X4N + B)(C*X4M + D)
A 5 N :2 B - C : M :3 D:1

’ ’ ’ ’ ~— (5x2-6)(4x3+1)
PRODUCT IS IN THE FORM ©P*X4I + Q®X4J + R*X4K + S WHERE:

P =+ 20,00 I =+ 5.00
Q =+ 5.00 J =+ 2,00
R == 24,00 K =+ 3.00
S == 6,00

»

Note that in this program, the student has provided for two different output forms. 1f m and n are
equal, one term is typed rather than two terms of the same degree. Some students usually object to this
output form for the cases in which the constant and/or the exponent is zero or one. These students
usuclly agree that each term typed out ought to be in one of the following six formats:

0 A x Ax X' AX"
Ceitainly these students should be encouraged in attempting to write a program which will use the
formats they desire, Experience with this problem, however, has shown students are more successful
if they first write a separate program which ASKs for A and N (Ax") and then types out the same number
using the appropriate format. Their experience with this shorter program will then allow them to in-
corporate its ideas into other programs without much difficulty. To write this short program the student

must first define the conditions which determine each case, as in

Output Occurs When

0 A =0, N = any value
A AX0,N=0

X A=1,N=1

Ax A>X1or0,N=1

Xn A=1,N>0o0r1

Axn A>X0orl1,N>X0or1

Then, he must identify with a series of IF statements, the case being examined. Such a program is:

01.10 TYPE "INPUT AN EXPRESSION OF THE FORM A%X4N"]

01.20 ASK ?7A , N ?,1!1"THIS CAN BE WRITTEN AS: "
01.30 IF (A) 1.4,2.1,1.%

01,40 IF (N) 1.5,3.1,1.5

01,50 IF (N-1) 1,6,1,7,1.6

01,60 IF (A=1l) T.1,6.1,7.1

01,70 IF (A-1l) 5.1,4.1,5.1

02,10 TYPE "0"1!; QUIT
03,10 TYPE %k.0,A,11; QUIT

04,10 TYPE "X"1!; QUIT

N

96

05.10 TYPE Z4.0,A,"%X"1{; QUIT

06,10 TYPE “x+“,%2.o,m,11; QUIT

07.10 TYPE %4.0,A,"®*X4" %2.0,N,!1; QUIT \
* yi
The output of two runs of this program is:
*Go
INPUT AN EXPRESSION OF THE FORM A%#X4N
A :3, N :0
THIS CAN BE WRITTEN AS: =+ 3
*GO .
INPUT AN EXPRESSION OF THE FORM A¥#X4N
A:5 , N :1
THIS CAN BE WRITTEN AS: =+ S5*X
There are at least two good reasons for assigring the apparently easy programs shown on pages
88 and 89. First, the students must determine and write the general expression for the product. This
expression should not be given in class. Second, the program both motivates and forces students to work
several numerical examples, as this is the only way in which they can check that their progroms ore
working properly. \
Programs for multiplication of monomials and polynomials also can be written using the J

techniquas shown in the program on page 87. These programs should probably be used as an assignment
for better students or as teacher written progroms to provide individual drill for those students having
difficulty, since the writing of the programs would require more time than the topic justifies for the

average student.

Although the two special products (A + B)" can be handled with programs similar to those
already shown in this section, students are often more interested in ‘pursuing these cases using Pascal's
triangle. OFf course the development of Pascal’s triangle requires the students to multiply the expressions
in a traditional fashion, thus this practice is not lost. An approach that has been successfully used
with students is to have them evaluate (A + B)" for N = 1,2,3, 4,5 by multiplying the appropriaie poly~
nomials using pencil and paper. The resulting coefficients are then arranged by the teacher to form the
first five lines of Pascal's friangle. The students are then asked to write a program which will ASK N,
then print the first N lines of this triangle. Note that the students are left with the task of finding an
appropriate algorithm. A typical student solution to this problem is:

97

01,01 C PROGRAM TO GENERATE N LINES OF PASCAL'S TRIANGLE (i -=N<=11)
01.10 ASK ?N ?

01.20 SET D=2; SET P[1l]=1; SET P[2]=1; TYPE %3.0

01.30 TYPE 11; FOR J=1,N; DO 2

¥

g 01.40 QUIT
= 02.10 FOR I=1,D; TYPE P[I]," "
02,15 SET D=D+l1; TYPE !
02.20 FOR I=2,D-1; SET Q[I]=P[I]+P[I-1]
02.30 SET P{D}=1; FOR 1=2,D-1; SET P[I]=Q[I]
»
' The output of a run of this program is:
» 'Go
N :11
=+ 1 =+ 1
=+ l =+ 2 =+ 1
=+ 1 = 3=+ 3=+ 1
=+ 1=+ L=+ 6=+ 4 =+ 1
=+ 1 =+ 5 =+ 10 =+ 10 =+ 5 =+ 1
=+ 1 =+ 6 =+ 15 =+ 20 =+ 15 =+ 6 =+ 1
=+ 1 =+ T =+ 21 =+ 35 =+ 35 =+ 21 =+ T =+ 1
=+ 1 =+ 8 =+ 28 =+ 56 =+ T0 =+ 56 =+ 28 =+ 8 =+ 1
=+ 1 =+ 9 =+ 36 =+ 84 =+126 =+126 =+ 84 =+ 36 =+ 9 =+ 1
=+ 1 =+ 10 =+ 45 =+120 =+210 =+252 =+210 =+120 =+ 45 =+ 10 =+ 1
=+ 1 =+ 11 =+ 55 =+165 =+330 =+U462 =+462 =+330 =+165 =+ 55 =+ 11 =+ 1
»

(‘ ! Mote that the algorithm used in the program will correctly compute the terms of the Nth line for a very
large N, but the type format nsed will only allow 12 terms (N=11) to be typed on a single line. This is
not, however, much of a disadvantage as the main purpose of this assignment is to develop an algorithm
for use in other programs.

After writing a program which generates Pascal's triangle, the students can be assigned the
problem of writing a program which will ASK N, then type all the terms in the expansion of (a+B)".
Such a program is:
: 01.01 C PROGRAM TO COMPUTE (A+B)4N FOR N>=0
01.10 ASK ?N ?,!!,"THE RESULT IS THE SUM OF THE FOLLOWING TERMS:"!
01,20 SET D=2; SET P[1]=1; SET P[2]=1; IF (N-2) 1.3; FOR J=2 ,N; DO 2
. 01.30 FOR J=0,N; DO 3

01,40 QUIT

02,10 SET DeD+1; FOR I=2,D-1; SET Q[I]=P[I]+P[I-1]
02.20 SET P[Dl=1; FOR I=2,D-13 SET P[I]=q[I]

33.10 TYPE %8.0,P[J+1]," *A¢+ " %2,0,N=J," * B4",J,!

93

38

Note that step 1.2 and part 2 are identical to the steps in the previous program which compute the terms
in each line of Pascal's triangle. This technique of using part or all of one program when writing an-
other is often useful, and this two-program sequence provides an excellent way to introduce this idea

if it has not been previously discussed. The output of two runs of this program is:

*Go

N :3

THE RESULT IS THE SUM OF THE FOLLOWING TERMS:
=+ 1 *% p4=+ 3 * B4=+ O

=+ 3 % A=+ 2 * Bé=+ 1

=+ 3 % At=+ 1 * B4=+ 2

=+ 1l * p4=+ 0 * B4=+ 3

»

*GO

N :20

THE RESULT IS THE SUM OF THE FOLLOWING TERMS:

=+ 1 * A+=+420 * Bt=+ O
=+ 20 * A4=+19 * Bé=+ 1
=+ 190 * A+=+18 * Bt=+ 2
=+ 1140 * A4=41T7 * B4=+ 3
=+ 4L8LS * A4=+16 * Bi=+ L
=+ 15504 * A4=415 * B4=+ 5
=+ 38760 * A4=+1L4 * B4=+ 6
=+ 77520 * A+=+13 * Bt=+ T
=+ 125970 * At=+12 * B4=+ 8
=+ 167960 * A4=+11 * Bt=+ 9
=+ 184756 * A4=410 * B4=+10
=+ 167960 * pAt=+ 9 * At=+1l
=+ 125970 * A4=+ 8 * B4=+l2
=+ T7520 * At=+ T * B4=+13
=+ 38760 * A4=+ 6 * Bi=+1lh
=4 15504 * p4=+ 5 * B4=+15
=+ LBLS * At+=4+ 4 # B4=+16
=+ 1140 * At=+ 3 * Bt=+17
=+ 190 * p4=+ 2 * B4=+18
=+ 20 % A4=+ 1 * B4=+19
=+ 1 % At4=+ 0 * B4=+420

If class time permits, the students can be asked to modify their programs for the expansion
of (A+B)" so that the expansion of (A-B)" is given. The following program is identical to the previous

program except for changes in steps 1.01, 1.30, and 3.10.

94

S)Sii‘

bt

01,01 ¢ PROGRAM TO CCMPUTE (A-B)4N FOR N>=0 .
01.10 ASK ?N ?,!1!,"THE RESULT IS THE SUM OF THE FOLLOWING TERMS:"!
01.20 SET D=2; SET P[1)}=1; SET P[2]=1; IF (N-2) 1.3; FOR J=2,N; DO 2

‘ 01,30 SET SIGN=1; FOR J=0,N; DO 3

(01.40 QUIT
02.10 SET D=D+l; FOR I=2,D-1; SET Q[I]}=P[I}+P[I-1]
02.20 SET P[D]=1; FOR I=2,D-1; SET P[I]=Q[I]

03.10 TYPE %8.0,SIGN*P[J+1]," * A+",%2,0,N-J," * B4+",J,!; SET SIGN=-SIGN
#*

The output of a run of this program is:

‘ *GO
N :5
THE RESULT IS THE SUM OF THE FOLLOWING TERMS:
=+ 1 * At=+ 5 % Bt=+ 0
=~ S % At=+ L4 # Bi=4 1
=+ 10 * At=+4 3 % Bi=+ 2
=- 10 * A4=4 2 % Bi=4 3
=+ S % At=4 1 ® Bt=+ 4
He 1 % A4=+ 0 * Bt=+ 5
#*

Having students alter their previous programs in this way strongly reinforces the similarity
between the expansion of the expressions (A+B)n and (A-B)n.

(As the final example in this section, consider a program which types an expression of the
form (Cx + Dy)" for the user to solve and then verifies this user's solution. This problem can be used
as an assignment for better students or as a teacher written exericse which provides extra practice for
students having difficulty. Although the following program is written so that it can provide extra
practice for slow students, the program is more instructive for the student who writes it than it is for

other students who use it, The program is:

01,01 C PROGRAM TO ASSIST EVALUATION OF THE EXPRESSION (C*X + D*Y)+KN
01.10 SET C=FITR(FRAN()*10); SET D=FITR{FRAN{()*10)
. 01,15 SET N=FITR(FABS(FRAN())*5)
01.20 TYPE "THE PROBLEM IS: (",%3.0,C,"*X ".D,"*%)t" ,%2.0,N,!!
01.30 TYPE "NOW INPUT THE COEFFICIENTS OF EACH TERM,"!
01,40 SET DD=2; SET Pl1l=1; SET P{2j=l; IF (N-2) 1.5; FOR J=2,N; DO 2

01.50 FOR J=0,N; DO 3 Here again is the algorithm for constructin
01.60 TYPE I1; QUIT ° \F S Pascal’s triangleg.

02.10 SET DD=DD+l; FOR I=2,DD=l; SET Q[I]=P[I]+P[I=-1]
02.20 SET P[DD]=1; FOR I=2,DD-1; SET P[I]=q[I]

03.10 T "COEFFICIENT OF X+",%1.0,N=J," * Y4" J," TERM IS "; ASK ANS,!
03.20 IF (ANs-P[J+1]'c+(N-J5'D+J5 3.3,3.4,3.3
03.30 ASK "TRY THAT AGAIN ", ANS,!; GOTO 3.2
4,, 03.40 CONTINUE
: ! »
. W

95
100

The output of two runs of this program is:

*GO
THE PROBLEM IS: (=+ Lx =a 2%Y)4=+ 3

NOW INPUT THE COEFFICIENTS OF EACH TERM.
COEFFICIENT OF X4=+3 * Y4=+0 TERM IS :6l
COEFFICIENT OF X+=+2 * Y4=+1 TERM IS :-96
COEFFICIENT OF X4=+1 % Y4=+2 TERM IS :.48
COEFFICIENT OF X4=+0 * Y4=+3 TERM IS :-8

*

%GO
THE PROBLEM IS: (=+ 9%X =+ 2%Y)t=+ 4

NOT INPUT THE COEFFICIENTS OF EACH TERM.

COEFFICIENT OF X¢=+i * Y4=+0 TERM IS :7561
TRY THAT AGAIN 16561
COEFFICIENT OF X4=+3 * Y4=+1 TERM IS :5832
COEFFICIENT OF X4=+2 * Y4=+2 TERM IS :194l
COEFFICIENT OF X4+=+1 #* Y4=+3 TERM IS :288
COEFFICIENT OF X4=+0 ®* Y4¢=+4 TERM IS :16

The techniques used in this program can be used with many different expressions. Class time might be
used more efficiently if groups of four or five students are each given the task of writing a program
similar to the example for a different expression. After writing their own program, the students can

then use programs written by others, thus gaining practice with all of the different expressions.

C. Division

Programs similar to those on pages 88, 90 and 95 can be assigned while teaching division
of polynomials. Since the basic formats and algorithms are very much like those already shown in the
programs for polynomial multiplication, similar sample programs are not included in this text.

The following two programs are typical of problems that can be assigned for students to pro=
n

gram. The first program ASKs for values in the expression :,('Lm , and then simplifies the expression.

01.01 C PROGRAM TO EVALUATE THE EXPRESSION A“X4N/B®X+M
01.10 TYPE "INPUT NUMBERS IN THE FORM A*X4N/B®X4M"!
01,15 ASK ?A ?,? N ?,7.B 72,7 M 2,1

01,20 TYPE "RESULT IS ",%6.02,A/B; IF (N-M) 1.3,1.4,1.5
01.30 TYPE " / X+" ,%2.0,M=N,!!; QUIT

01,40 TYPE 1!; QUIT

01.50 TYPE " * X4" ,%2,0,N-M,!!
% .

9%
ERIC L

The output of thrae runs of this program is:

A : *Go
i INPUT NUMBERS IN THE FORM A®X4N/B*X+M 5
‘ A ik N :5 B :2 M:8 < 4x
RESULT IS =+ 2.00 / Xt=+ 3 ~35
2x
*GO
INPUT NUMBERS IN THE FORM A®X4N/B*X4M 8
A:2 N :8 B :h M5 < 2
RESULT IS =+ 0,50 * Xt=+ 3 40
' *Go
INPUT NUMBERS IN THE FORM A%X4N/B*X4M
A :2 N :7 B :8 M:T < 2
. RESULT iS5 =+ 0,25 o’

#*

Note that this student's program has included three different formats for fyping the results. Using the
three formats, the exponent of x is always positive and is not typed when equal to one or zero. By
writing a program such as this, the student has demonstrated an ability to properly evaluate any similar

expression with or without computer assistance. n m
Ax + Bx
A similar program which evaluates expressions of the form Ax +Bx is:

cxP

{.‘ 01.01 C PROGRAM TO EVALUATE THE EXPRESSION (A®*Xt+N + B*X4M) / (C*X+P)
01.10 TYPE "INPUT NUMBERS IN THE FORM (A®X+N + B®*X4M) / (C*X+P)"!
01.15 ASK %A ?,? N 2,2 B 2,27 M 7,7 C 2,7 P 2,!
01.20 TYPE !"RESULT Is ",%6.02,A/C; SET E=N-P; DO 2
01.30 TYPE " " %6.02,B/C; SET E=M-P; DO 2
01.40 IF (N-M) 1.6,1.5,1.6
01,50 TYPE !!"THIS CAN BE REDUCED TO ",%6.02,(A+B)/C; DO 2
01,60 TYPE !!; QUIT

02,10 IF (E) 2.2;2.3,2.k
02,20 TYPE " / X4",%2,0,-E
02.30 RETURN

02,40 TYPE " * X+",%2.0,E
*

The output of two runs of this program is:

*GO

INPUT NUMBERS IN THE FORM (A%XtN + B#X+M) / (C*XtP) 7 .2

Al N:7T B:3 M:2 C:5 Pk <« 55_1%5_
5%

RESULT IS =+ 0.80 % Xt=+ 3 =+ 0,60 / Xt=+ 2

O

Aruitoxt provided by Eic:

E

%50
INPUT NUMBERS IN THE FORM (A®X4N + B¥X4M) / (C¥X+P)

7
A b N 2T B :3 M :T ¢ :5 P b = 4x” +3x”
7
RESULT IS =+ 0.80 * Xt=+ 3 =+ 0,60 * Xt=+ 3 Sx

THIS CAN BE REDUCED TO =+ 1,40 * X+=+ 3

Here again there are three different formats for typing the answer as well as two steps which combine
terms whenever possible. By using several programs like the preceding two with different groups of
students, as discussed for the program on page 95, each student can be assigned a problem approp:iate
to his ability level.

Although the topic of synthetic division is usually reserved for the third year of algebra, there
seems little reason for not presenting this technique when polynomial division is first introduced in
Algebra 1. Once the methods for synthetic division have been presented in class, the students can be
assigned the task of writing a program which will divide polynomials using synthetic division. By
successfully writing such a program, the students demonstrate a complete understanding of the required
algorithm. This program is not a difficult one for most students to write. Since most are quite inter~
ested in the technique of synthetic division, even poor students have achieved complete success with

this topic. A program which performs synthetic division is:

01,01 C PROGRAM FOR SYNTHETIC DIVISION
01,10 ASK "WHAT IS THE HIGHEST POWER OF X IN THE DIVIDEND " ,N,!!
01,11 TYPE “INPUT COEFFICIENTS FOR EACH TERM"

01,12 FOR I=0,N; TYPE 1"COEF, OF Xt",%2.0,N-I," TERM IS ";ASK c(I]
01,20 ASK 1!"DIVISOR IS X MINUS ",D

01,30 SET A[0]=C[0]; FOR I=1,N; SET A[Il=C[I]+D*A[I-1]

01,40 TYPE I!!"RESULT IS THE SUM OF THE TERMS:"

01,50 FOR I=0,N~l; TYPE !,%L4,0,A[I],"#*X4+" %2,0,Nal-I

01,60 1F (alx]) 1.7,1.8,1.7

01,70 TYPE I"REMAINDER IS ",%4.0,A[N]

01,80 TYPE 1!

#

98

O

IC

103

The output of two runs of this program is:

- *Go
(WHAT IS THE HIGHEST POWER OF X IN THE DIVIDEND :3

INPUT COEFFICIENTS FOR EACH TERM

COEF. OF X+=+ 3 TERM IS :1

COEF, OF X+=+ 2 TERM IS :-6

COEF. OF X+=+ 1 TERM IS :3 Problem is:
COEF. OF X4=+ O TERM IS :10 3 9
x =-6x"+3x+10
. DIVISOR IS X MINUS :2 7

RESULT IS THE SUM OF THE TERMS:
=+ 1#%Xt=4 2

. = h#X4=4 1
== 5%#Xt=4 O

*¥GO
WHAT IS THE HIGHEST POWER OF X IN THE DIVIDEND :4

INPUT COEFFICIENTS FOR EACH TERM
COEF. OF X#=+ 4 TERM IS :2 Problem is:

COEF. OF Xt+=+ 3 TERM IS :3 R

COEF. OF X+=+ 2 TERM IS :-l 2430 o 42t By 46
COEF. OF Xt=+ 1 TERM IS :5 3

COEF., OF Xt=+ O TERM IS :6 x

DIVISOR IS X MINUS :-3

(., RESULT IS THE SUM OF THE TERMS:
=+ 2¥Xt=+ 3
=- 3¥Xt=+ 2
=+ S#Xt=4+ 1
= 10%Xt=+ O

REMAINDER IS =+ 36

Although not a part of studying division of polynomials, students are often intrigued by the
possibility of obtaining greater than six digit accuracy in the output. A good introduction to techniques
for obtaining N place accuracy is an assignment to write a program which ASKs N, numerator (NU),
and denominator (DE), then types N places of the decimal form of NU/DE. If this idea is new to the
students, this assignment should be restricted to prop:r fractions expressed as NU/DE. Such a program

()

ERIC 104

Aruitoxt provided by Eic:

ERI!

01,01 C PROGRAM TO CONVERT PROPER FRACTION TO DECIMAL FORM
01.02 C CONTAINING N DIGITS

01,10 ASK 7 7! ,"NUMERATOR IS " ,NU,!"DENOMINATOR IS ",DE,!!
01,20 TYPE "RESULT IS .",%1.,0

01.30 FOR I=1,¥; DO 2

01.40 TYPE I1Y; QUIT

02.10 SET NU=NU*10; SET Q=FITR(NU/DE); TYPE Q; SET NU=NU-Q¥*DE
*

The output of two runs of this program is:

*GO

N :17

NUMERATOR IS :123
DENOMINATOR IS :1001

RESULT IS ,=+1=+2=+2=+8=+T7=+T7=+1=42=+2=+8=+T=+T=+1=+2=42=+8=+7

*GO

N :20

NUMERATOR IS :1
DENOMINATOR IS :17

RESULT IS ,=+0=+45=+8=+82+2=435+5242240=+4=+1m+1=+T=+6=+U=+T=+0=+5=+8=+8

The techniques used in this program can also be used when the topic of repeating and terminating deci-
mals is presented. Note that the computations of this program (step 2. 10) involve little more than re-

taining the integral remainder after performing the operation of division, and this procedure should be

familiar to many students.

An instructive proBIem to follow the writing of a program which converts proper fractions to
decimal form is the writing of a program to convert proper and improper fractions to decimal form. The
first problem might be skipped with better students, but average students will have more success if it is

used as the initial step. A program which correctly converts both proper and improper fractions is:

[

100

‘[IC 10

.‘ :91

Aruitoxt provided by Eic:

01.01 C PROGRAM TO CONVERT PROPER OR IMPROPER FRACTION TO
01.02 ¢ DECIMAL FORM CONTAINING N DIGITS

01,10 ASK ?N ?!,"NUMERATOR IS " _NU,!"DENOMINATOR IS ",DE,!!
01.12 TYPE "RESULT IS ",%1,0; SET E=-1

01,13 SET E=E+1; IF (104E-NU) 1,13, 1.13; FOR I=1,E; DO 3
01,20 TYPE " , "; FOR I=1,N-E; DO 2

01,40 TYPE !I!!; QUIT

&3

02.10 SET NU=NU*10; SET Q=FITR(NU/DE); TYPE Q; SET NU=NU-Q*DE

03.10 SET NN=NU/104FABS(E-I); SET Q=FITR(NN/DE); TYPE Q
03.20 SET NU=NU-Q*DE*104FABS(E-I)
*

The output of two runs of this program is:

%GO

N :12

NUMERATOR IS :1234
DENOMINATOR IS :7

RESULT IS =+0=+l=+7=+6 N =+2=+8=+5=+7=+1=+h=+2=+8

*GO

N :16

NUMERATOR IS :3
DENOMINATOR IS :17

7 RESULT IS =+0 , =+1l=+7=+6=+U=4T=240=45=248=4+8=42=43=+5=42=49=4)

Note that this program is quite similar to the preceding one. The major difference is the inclusion of
part 3 and step 1.13. Step 1.13 determines the order of magnitude of the numerator and part 3 deter-
mines the portion of the quotient which lies to the left of the decimal point.

Although the program already shown satisfies the requiremerts of the assignment, there are
two drawbacks to its use that will concern many students. First, only 19 digits of a quotient can be
typed without the occurrence of overprinting in the last print postion. Second, the algorithm counts
leading zeroes to the left of the dacimal point as part of the N digits to be typed out. The majority
of students will be more successful if they first write a working program without worrying about these
problems, and then modify this program to eliminate the problems. A modification of the previous ex-

ample which eliminates both of these handicaps is:

101

ERIC 106

Aruitoxt provided by Eic:

01,01 C PROGRAM TC CONVERT PROPER OR IMPROPER FRACTION TO
01,02 C DECIMAL FORM CONTAINING N DIGITS (WITH MODIFIED TYPE FORMAT)
01.10 ASK TN 7! ,"NUMERATOR IS " ,NU,!"DENOMINATOR IS ",DE,!!

01,12 TYPE "RESULT IS "!,%1.0: SET E=-1; SET C=0; SET SIG=0

01,13 SET E=E+1l; IF (104E-NU) 1,13, 1.13; FOR I=1,E; DO 3

01,20 TYPE " , "; SET C=C+l; FOR I=1,N+SIG; DO 2

01,40 TYPE !1!; QUIT

02.10 SET NU=NU%10; SET Q=FITR(NU/DE); TYPE Q; SET NU=NU-Q*DE; DO &

03,10 SET NN=NU/104FABS(E-I); SET Q=FITR(NN/DE); IF (Q) 3.2,3.15,3.2
03.15 IF (SIG) 3.2; RETURN
03.20 SET SIG=SIG-1; TYPE Q; SET NU=NU-Q*DE*10+FABS(E-I); DO 4

04,10 SET C=C+l; IF (FITR(C/20)-C/20) L4.,2; TYPE |
04,20 CONTINUE
*

The output of two runs of this program is:

%GO

N :L48

NUMERATOR IS :3
DENOMINATOR IS :17

RESULT IS
o« =+1=+T=+6=+U=+T=+0=45=48=+8=42=+3=+5=42=4+9=+ = +1=41=+T=+6
=44=47=4+0=+5=48=+8=+4+2=243=45=4+2=+9=+ U=+ 1=+ 1=+ T=+ 6=+ 4=+ T=+0=+5
=+8=48=42=+3=45=42=49=+h=+1 «—————There is no upper limit to the
number of digits that can be typed.

*GO

N :12

NUMERATOR IS :923E+6
DENOMINATOR IS :1800k4

RESULT IS
=4+5=4+1=4+2=4+6=+6 =+h=+2=+0=+7=+9=+5=+3

leading zeroes have been suppressed

In this program, part 4 is used to cause a carriage return and line feed after each 20 digits of the
quotient have been typed. The variable SIG is used as a flag to indicate when one or more non=-zero
digits have been typed to the left of the decimal point. If students are not asked to write a program
incorporating these medifications, the teacher might discuss methods for including them, since both

methods involve programming techniques that can be used in many other situations as well,

102
O

ERIC
107

D. Pascal's Triangle Using Random Numbers (Supplementary)

The use of random numbers is a topic that seems to fascinate students at all ability levels.
Although the FRAN () function has been used in several programs, none of the applications previously
discussed have done any more than select a few random numbers to be used as coefficients or exponents
in an olgebraic expression. FOCAL's random function is satisfactory for the applications shown so far,
but when statistical data is to be derived using random numbers, the FOCAL function is not satisfactory.
This means that students must first write (if time permits) or be given a program to generate pseudo-
random numbers.

There are several methods for generating pseudo-random numbers. The text Mathematics and

Computing with FORTRAN Programming; by Dorn and Greenberg; John Wiley & Sons, 1967, presents

several techniques, all suitable for presentation to high school students. One method for generating
pseudo-random number: that works very well in statistical applications is that shown in the following

flow chart. (This method is discussed in the Dorn and Greenberg text.)

*
DEFINE SI.52,RR,5S | SEE NOTE

SO THAT
SI<RR §2<SS

*Note: Sl and 52 are prime numbers
that have 2 as a primitive root.

SET
X*SS+RR
S§S=2uSS
RR*24#RR

This algorithm will produce random
numbers between 2 and 51 +52-2
with a cycle length that is the least
common multiple of $1-1and S2-1.

103

108

The following program is written according to this algorithm. The FOR statement is used

simply to cause the program to generate 10 numbers.

01.10 "ET S1=2005; SET S2=2003; SET RR=800; SET S5=801
0l... sOR I=1,10; DO 2
01.30 QUIT

02.10 IF (RR-S1) 2.2; SET RR=RR-S1
02.20 IF (ss-s2) 2,3; SET 5S=58~82

02.30 SET X=SS+RR; SET SS=2%SS; SET RR=2%*RR
02,40 TYPE %5.0,X,!

*

*Go Using these values for 51, S2, RR, and SS,
=+ 1601 the program generates pseudo-randem
=+ 3202 integers in the interval 2 through 4006 with

:I 2?33 a cycle length of 2,006,004.

=+ 1568
=+ 3136
=+ 2264
=4+ 520
=+ 1040

=+ 2080
*

A problem that has proven very successful when used as an assignment for students is:

Write a program which will simulate the dropping of N balls through the
following array. Assume that each ball is equally likely to fall to the left
or right at each point in the array.

P
PN
N NN
NN NN
NN NN

0800800

Your program should count the number of balls that land in each of the P
baskets (P = 6 in the diagram) and then typeout the number in each basket

after every TO balls have dropped.

104

109

S

A student written solution to this problem is:

01.10 ASK "NUMBER OF PILES ",P,!"NUMBER OF BALLS TO BE DROPPED " N
01,15 ASK !"PRINT TOTAL EVERY ",TO0," BALLS."!

01,20 FOR I=1,P; SET P[I]=0

01.30 FOR C=1,N; DO 2

01.40 TYPE !!; QUIT

-

02.10 SET POT=1; FOR B=1,P-1; DO 3

02.20 SET P[POT]=P[POT]+1

02,30 IF (FITR(C/TO)-C/TO) 2.4; TYPE !,%5.0,C; FOR I=1,P; TYPE P(I]
. 02.40 CONTINUE

03.10 DO 10; SET X=FITR(X/10); IF (FITR(X/2)-X/2) 3.2; SET POT=POT+1
03.20 CONTINUE

10,10 IF (sl) 10.3,10.2,10.3

10.20 SET S1=2005; SET S2=2003; SET RR=8C0; SET SS=801
10,30 IF (RR-S1) 10.L4; SET RR=RR-S1

10,0 IF (sS-s2) 10.5; SET SS=SS-S2

10.50 SET X=SS+RR; SET SS=2*SS; SET RR=2%RR

®

Note that part 10 is the pseudo-random number generator already discussed. Part 10 can be used in
this form to generate a random number x in any program. For this application, the 10 s position of
the random number is checked for evenness to determine whether the ball drops left or right. If used

in this way, good statistical results are achieved. The output of a run of this program is:

“,

*GO

NUMBER OF PILES :6

NUMBER OF BALLS TO BE DROPPED :5000
PRINT TOTAL EVERY :100 BALLS.

=+ 100=+ b=+ 31l=+ 20=+ 28=+ 13=+ N
=+ 200=+ 10=+ hli=+ 55=+ 58=+ 25=+ 8
=+ 300=+ 18=+ 58=+ 86=+ 88=+ ho=+ 10
= Loo=+ 2h=+ T9=+ 115=+ 113=+ 56=+ 13
=+ 500=+ 27=+ 101=+ 1bU3=+ 1h1=+ T0=+ 18
= 600=+ 29=+ 112=+ 183=+ 165=+ 89=+ 22

=+ T00=+ 3h=4¢ 132=+ 225=+ 181=+ 101=+ 27
. =+ 800=+ 34=+ 1L4T7=+ 261=+ 215=+ 115=+ 28
=+ 900=+ 38=+ 162=+ 295=+ 2L0o=+ 135=+ 30
=+ 1000=+ h3i=+ 178=+ 322=+ 2T7h=+ 152=+ 31
. =+ 1100=+ h7=+ 191=+ 349=+ 308=+ 1Tl=+ 3k
=+ 1200=+ 5l=+ 205=+ 38h=+ 335=+ 186=+ 39
=+ 1300=+ 56=+ 223=+ LOT=+ 370=+ 202=+ L2
=+ 1L0OO=+ 59=+ 245= 437=+ 398=+ 216=+ Ls
=+ 1500=+ 61l=+ 25T=+ L66=+ L3T=+ 232=+ b1
=+ 1600=+ 6=+ 276=+ 500=+ LE3=+ 2h3=+ 5h
=+ 1T700=+ 6T=+ 292=+ 52T=+ U9T7=+ 259=+ 58
=+ 1800=+ 69=+ 312=+ 55h=+ 526=+ 279=+ 60
=+ 1900=+ 75=+ 32h=+ 593=+ 552=+ 291=+ 65
=+ 2000=+ T79=+ 339=+ 61T7=+ 590=+ 308=+ 67

105

110

=+ 2100=+ 81=+ 35Lk=+ 6LS=+ 61T7=+ 332=+ T1
=+ 2200=+ 85=+ 370=+ 6Tl=+ 651l=+ 3LB=+ T5
=+ 2300=+ 88=+ 1388=+ 69T7=+ 688=+ 362=+ 17
=+ 2400=+ 95=+ LOo6=+ T26=+ T1lT=+ 3TT=+ 79
=+ 2500=+ 96=+ L25=+ T5T7=+ T50=+ 390=+ 82
=+ 2600=+ 98=+ LLB=+ T86=+ T83=+ L0O0=+ 85
=+ 2700=+ 10l=+ L61=+ B21=+ B15=+ Lil2=+ 90
=+ 2800=+ 103=+ L475=+ B5kL=+ BL5=+ L28B=+ 95
=+ 2900=+ 10b4=+ L493=+ B884=+ BTU=+ LLS=+ 100
=+ 3000=+ 108=+ 508=+ 915=+ 90k=+ L6L=+ 101
=+ 3100=+ 112=+ 522=+ 9hlb=+ 9ki=+ LUT8=+ 103
=+ 3200=+ 118=+ 5hL0o=+ 969=+ 975=+ L95=+ 103
=+ 3300=+ 120=+ 556=+ 1003=+ 100L=+ 513=+ 104
=+ 3400=+ 121=+ 566=+ 1043=+ 1036=+ 522=+ 112
=+ 3500=+ 125=+ 575=+ 107T=+ 1070=+ Shl=+ 112
=+ 3600=+ 12T=+ 594=+ 1112=+ 1099=+ 55L=+ 11k
=+ 3700=+ 130=+ 606=+ 1147=+ 1133=+ 56T=+ 117
=+ 3800=+ 134=+ 619=+ 1177=+ 1163=+ 58L=+ 123
=+ 3900=+ 139=+ 630=+ 121k=+ 1188=+ 60L4=+ 125
=+ 4000=+ 1lh=+ 6L6=+ 12L2=+ 1219=+ 620=+ 129
=+ 4100=+ 146=+ 660=+ 126T=+ 125L=+ 638=+ 135
=+ L4200=+ 1L4T7=+ 6T78=+ 129kL=+ 1292=+ 651=+ 138
=+ 4300=+ 1L4T7=+ 694=+ 1323=+ 1328=+ 66T7=+ 1kl
=+ L40O=+ 1L48=+ T1l2=+ 1362=+ 1354=+ 681=+ 143
=+ 4500=+ 151=+ T736=+ 1389=+ 1379=+ 699=+ 146
=+ 4600=+ 152=+ T51=+ 1h23=+ 1409=+ T16=+ 149
=+ 4700=+ 153=+ T69=+ 1L455=+ 1hhl=+ T30=+ 152
=+ L4LB0OO=+ 156=+ T93=+ 1481=+ 1LTO=+ TLS=+ 155
=+ 4900=+ 159=+ 805=+ 1510=+ 1503=+ T6T=+ 156
=+ 5000=+ 161=+ B823=+ 1534=+ 1537=+ T8l=+ 164

The output of this run compares quite favorably to the expected theoretical results. The

fifth line of Pascal's triangle is 1 5 10 10 5 1. This means the six numbers have the ratio 517 ;

%g ;70- -3% -512-. Comparing these ratios to the output yields:

*TYPE %,1/32,1,161/5000,!,164/5000,11
=+0,312500E-01
=+0,322000E-01
=+0,328000E-01

*TYPE 5/32,1,823/5000,!,781/5000,11
=+0,156250E+00
=+0,164600E+00
=+0,156200E+00

*TYPE 10/32,!,1534/5000,!,1537/5000,1!
=+0,312500E+00
=+0,306800E+00
=+0,30T400E+00

*

106

111

R

Ny &9

The output of another run of this program is:

{ %GO

LN NUMBER OF PILES :4
NUMBER OF BALLS TO BE DROPPED :5000
PRINT TOTAL EVERY :500 BALLS.

=+ 500=+ 82=+ 194=+ 163=+ 61
=+ 1000=+ 149=+ 394=+ 326=+ 131
=+ 1500=+ 221=+ 587=+ 502=+ 190
=+ 2000=+ 278=+ TT7T7=+ 690=+ 255
» =+ 2500=+ 345=+ 9T3=+ 860=+ 322
=+ 3000=+ L415=+ 1156=+ 1036=+ 393
=+ 3500=+ ULT6=+ 1336=+ 1225=+ L63
=+ L000=+ 533=+ 1539=+ 1L10=+ 518
* =+ 4500=+ 596=+ 1732=+ 1603=+ 569
=+ 5000=+ 651=+ 1919=+ 179T7T=+ 633

And again the results compare favorably to the expected theoretical results.

#TYPE %,1/8,!,651/5000,!,633/5000,1!
=+0.125000E+00
=+0,130200E+00
=+0.126600E+00

*7YPE 3/8,!1,1919/5000,1,1797/5000,!!
=+0.375000E+00
=+0,383800E+00
=+0,359400E+00

*

There is, however, one .obstacle to extensive use of this assignment. To run a program a sufficient
number of times to obtain acceptable results requires a great deal of computer time. An approach that
has been successfully used is to ask each student to write his own program, then choose two or three of
the most efficient student programs to obtain data for the entire class to use in developing Pascal's

triangle.

107

112

VIl FACTORING

> A. Prime Numbers and Factors of Integers

There are many more program examples in this section than time would permit using in a
conventional Algebra I or II curriculum. So many examples are included because, although these
programs require very little new mathematics, they do require a wide range of programming techniques
and are quite useful when teaching programming early in the course (Algebra I, II, or IlI). Students

. can concentrate on learning the programming skills being presented without also having to learn new
mathematics.

Certainly, the task of testing one integer for divisibility by another occurs in many different
problems. Asking students to write a program such as this allows them to first "discover” the algorithm

that will later become second nature to them. For example, consider this solution:

1.p1l C PROGRAM TO TELL WHETHER OR NOT N IS A FACTOR OF D .
¢#1.1p ASK 72N 2,7 D 7!

g¢1.2¢ IF (FITR(D/N)-D/N) 1,4,1.3,1.bL

$1.3¢ TYPE %5.¢,?D/N ?7,11; QUIT

@1.4¢ TYPE "N IS NOT A FACTOR OF D."!!

*

The output of two runs of this program fs:
%‘ ' %GO

N :17 D:12f¢9
N IS NOT A FACTOR OF D.

*Go

N :13 D :19¢1
D/N =+ 1

*

An alternate way of presenting this problem is to ask students to write a program which will
tell whether an ASKed number is even or odd. Since the solution algorithm is identical, slower
students might benefit if the teacher presents this alternate program in class and then assigns the more
general case as a homework problem,

Although a program for computing the factorial of an ASKed number is slightly misplaced
in this section on factoring, the following program is included because it is a good student assignment

when FOR statements are first introduced.

O

ERIC 113

Aruitoxt provided by Eic:

$1.61 C PROGRAM TO COMPUTE N FACTORIAL
$1.19% ASK N

@1.2p SET ANS=1l; FOR I=1,N; SET ANS=ANS*I
$1.3¢ TYPE "1 " %,ANS,!!

*

*GO
15 1 =+0.1200@PE+¢3
*Go

1@V =+0.1900P¢E+PL
*GO

:25¢0 | =+@.3232T9E+493

*

This program correctly computes factoric s for positive integers but does not reject improper input values.
Since students should be taught to anticipate all cases . applying corrective modifications to a program
such as this is a good exercise. A modified form is:

$1.#1 C PROGRAM TO COMPUTE N FACTORIAL

$i.10 ASK N

#1.14 IF (W) 1.4, 1.2, 1.18

$1.18 IF (FITR(N)-N)1.L4, 1.2, 1.4

$1.2¢ SET ANS=1; FOR I=1,N; SET ANS=ANS*I

$1.30 TYPE "1 ",%,ANS,!!; QUIT
@1.4¢ TYPE " HAS NO DEFINED FACTORIAL."!!
’ .

The outputs of three runs of this program are:
*Go
th,32 HAS NO DEFINED FACTORIAL.

*Go
:=8 HAS NO DEFINED FACTORIAL.

*Go
1148 t =+¢,933257E+158

A program which determines all factors of an ASKed number is useful, first, when teaching
techniques of programming, and later, as a part of programs for factoring polynomials. Such a program

can also be used with elementary students to help introduce the notion of a prime number. One such

program is:

110

114

g’

&9

[

ERIC

Aruitoxt provided by Eic:

p1.91
21,19
91,20
@1,39

p2,19
g2.29
p2.39
*

C PROGRAM TO DETERMINE FACTORS OF N
ASK 7N ?!"FACTORS OF N ARE:",%4,0
FOR I=1,N; DO 2

TYPE !!; QUIT

IF (FITR(N/I)-N/I) 2.3,2.2,2.3
TYPE 1,I
CONTINUE

The outputs of two runs of this program are:

*Go

N :23
FACTO
B

=+ 2
*G0

N :2k
FACTO
=4

=4

=4

=4

=4

=4

=+ 1
=+ 2
»

RS OF N ARE:
1
3

RS OF N ARE:

FROOhETWMN -

Although this program works for all positive integers, it does so with little efficiency, as the algorithm

simply tries each

integer 1 through N as a divisor, Many students will quickly realize that other than

N itself,\/ﬁ is the largest possible divisor. Encouraging students to write this program as efficiently

as possible often results in their learning more mathematics than anticipated. One possible program is:

g1,01
#1,1¢
g1r.2¢
@1.3¢

g2,1¢
ga.2¢
g2.3¢
»

C PROGRAM TO DETERMINE FACTORS OF N
ASK 7N ?i1"FACTORS OF N ARE:",%4.¢
SET E=FSQT(N); FOR I=1,E; DO 2

TYPE t!; QUIT

IF (FITR(N/I)-N/I) 2.3,2.2,2.3
TYPE 1,I," “,N/I
CONTINUE

Note that this program is identical to the previous example with the exception of changes in lines

1.2and 2.2,

m

115

_ The output of a run of this program is:

¥GO "
N :1hkk ‘
FACTORS OF N ARE:
=4+ 1 =+ 1hd

=+ 2 =+ T2

=+ 3 =4+ L8

=4 h =+ 36

=4 6 = 2k

=+ 8 =+ 18

=+ 9 =+ 16

=+ 12 =+ 12

*

One werd of caution regarding asking students to write programs as <fficiently as possible.
Although this request is one which most student enjoy fulfilling and one that is quite useful when pro-
gramming s first introduced, there is no reason for continuing to request more than reasonable efficiency.
Since the main purpose of using computer facilities is to better teach mathematics, the students' goal
should be to create a mathematizally and logically valid algorithm. Often, little additional mathematics
is learned when students are asked to create the most efficient algorithm possible, because such
algorithms ofter, depend or: programming tricks rather than on additional mathematics.

The problem of writing a program to type the prime factors of an ASKed number is useful
for introducing both the notion of prime numbers and the techniques of programming. The following

program follows an ulgorithm quite similar to that shown in the previous example for finding all factors.

¢1.¢1 C PROGRAM TO FIND PRIME FACTORS OF N

$1.1¢ ASK ?N ?!"PRIME FACTORS OF N ARE:";TYPE %k.d
1,20 SET 1I=2; DO 2

g1.3¢ FOR I=3,2,N; DO 2

gl.4¢ TYPE 11; QUIT

g2.1¢ 1IF (FITR(N/I)-N/I) 2.3,2.2,2.3
g2.2¢ SET N=N/I; TYPE 1,I; GOTO 2.1
g2.3¢ IF (N-1) 1,4, 1.4; CONTINUE

The outputs of two runs of this program are:

*Go
N :196¢

PRIME FACTORS OF N ARE:
=+
=4
=+
=+
=+
=+

=IO

112

116

*GO
N :31

{ PRIME FACTORS OF N ARE:
=+ 31

*

Note that this algorithm determines the prime factors without previously knowing which numbers are
prime. In the sample runs, the divisors used are 2, then all odd integers umil all factors are found.
Although the program would be even less efficient, all positive integers greater than 1 could be used
as trial divisors by students totally unfamiliar with prime numbers. By properly chocsing values of N
for students to use, the program could be used to develop an intuitive notion as to which numbers are
prime and why. This program might be used also to demonstrate the problem in determining the prime

factors of zero:

*Go

N :¢
PRIME FACTORS OF N ARE:
=+
=+
=+
=+
=+
=+
=+
=+
=+
=+
=4
=+
=+
=+

=+€7¢1.9¢
*

PPN NODNDNDRDNDADIONDND NN

Better students can be given the slightly more difficult problem of having each factor typed
only once with the appropriate power. However, since only the programming is more difficult, with
little additional mathematics to be learned, the problem is only valuable when teaching programming

techniques. A program which does this is:

- ' K

117

$1.81 C PROGRAM TO FIND PRIME FACTORS OF N
$1.1¢ ASK 7N ?!"PRIME FACTORS OF N ARE:"
gl.2¢ SET I=2; DO 2

#1.3¢ FOR I=3,2,N; DO 2

@l.4¢ TYPE 11; QUIT

g2.1¢ Ir (FITR(N/I)-N/I) 2.3,2.2,2.3

¢2.2¢ SET N=N/I; SET C=C+l; GOTO 2.1

.$2.3¢ IF (C) 2.5,2.5; TYPE %h4.@,!,I; IF (c-1) 2.5,2.5,2.4
g2,4g TYPEI" ¢+ ",%2.0,C

g2.5¢ IF (N-1) 1,4,1.4; CONTINUE

#*

The outputs of three runs of this program are:

*GO

N :196¢

PRIME FACTORS OF N ARE:
=4 2 ¢+ =+ 3

=+ 5

=4 T 4 =+ 2

*G0

N :2¢L8

PRIME FACTORS OF N ARE:
=4 2 ¢ =+11

*GO

N :31

PRIME FACTORS OF N ARE:
=+ 31

»

The task of writing of a problem to generate prime numbers less than or equal to an ASKed N
should be given to all students, as the algorithm they develop can be used later in many other programs.

The following algorithm is typical of those written by students in Algebra I or I1:

114

118

()

O

ERIC

Aruitoxt provided by Eic:

TRY: Represents possible prime
number

OBTAIN VALUE FOR N

CHK: Represents divisors used in
determining whether TRY
is prime.

1S
CHK A DIVISOR
OF ?TRV

A program using this algorithm is:

g1.¢1
g1.1¢
g1,2¢
@1.3¢
01.40
01,50
*

C PROGRAM TO DETERMINE PRIMES <=N.
ASK ?N ?!"PRIMES <=/ N ARE:"; IF (1-N) 1.2; TYPE 1!!; QUIT
TYPE %4,0,1,2; SET TRY=1

SET TRY=TRY+2; SET CHK= 3; IF (TRY-N) 1.b4,1.4%; TYPE 111; QUIT
IF (CHK= FSQT(TRY)) 1,5,1,5; TYPE ! ,TRY; ¢oTo 1.3

IF (TRY/CHK- FITR(TRY/CHK)) 1.3,1.3; SET CHK=CHK+2; GOTO 1.4

The output of @ run of this program is:

*GO

N :5¢

PRIMES <= N ARE:
=4 2

=4 3

=4 5

=4 T

=4 11

=4 13

=4 17

115

+

= i9
=4+ 23
= 29
= 31
= 37
= L1
- h3
=+ 47

If time permits, students can be asked to modify their prime generating program so that it
generates twin primes or prime triplets. Experience with this assignment shows that it often motivates
many students to pursue several areas of number theory with and without computer assistance. A modifi~

cation of the previous program which types only twin primes is:

¢1.81 C PROCRAM TO DETERMINE TWIN PRIMES <= N,
$1.1¢ ASK ?F¢ ?!"TWIN PRIMES <= N ARE:"; IF (1-N) 1.2; TYPE !!!; QUIT
@1.2¢ SET TRY=1; SET LTRY=2; GOTO 1.3

¢1.25 SET LTRY=TRY

P1.3¢ SET TRY=TRY+2; SET CHK=3; IF (TRY-N) 1.4,1.4; TYPE !!1;
L.4p IF (CHK-FSQT(TRY)) 1.5,1.5; IF (LTRY+2-TRY) 1.25,1.45,1,
$1.45 TYPE %L.¢,t,LTRY," ",TRY; GOTO 1.25

21.5¢ IF (TRY/CHK-FITR(TRY/CHK)) 1.3,1.3; SET CHK=CHK+2; GOTO 1.4

QUIT
25

The output of a run of this program is:

*Go

N :500

TWIN PRIMES <= N ARE:
=4 3 =4 5

=+ 5 =+ 7 Note: After running their programs
.=+ 11 =+ 13 for prime triplets, many students will

f: :2” =+ 19 be surprised that only 1 set of trip~

-t hg _:_: ﬁ; lets is found. Asking students to prove

=+ 59 =+ 61 that there are no other triplets is often

=+ T1 =+ T3 a productive assignment. Although not

=+ 101 =+ 103 all students wil' be successful in prov-

=+ 107 =+ 1¢9 ing the desired theorem, most will

=+ 137 =+ 139 discover other useful ideas in the

=+ 1k9 =+ 151 process.

=+ 167 =+ 169

=4+ 179 =+ 181

=+ 191 =+ 193

=+ 197 =+ 199

=+ 227 =+ 229

=+ 239 =+ 241

=+ 269 =+ 271

=+ 281 =+ 283

=+ 311 =+ 313

116

ERIC
T 120

=+ 3h7 =+ 349
=+ k19 =4 421
=+ h31 =+ 433
=+ W61 =+ L63

The program on page 115 correctly computes, but does not remember, all primes less than
an ASKed N. Since many applications will require a series of primes to be known, the following pro-
gram is a modification which will remember the primes computed. Note that this program can also be

used as an early exercise involving subscripts for students learning to program.

¢1.¢1 C PROGRAM TO DETERMINE AND REMEMBER PRIMES <=N
#1.1¢ ASK 7N ?1"PRIMES <= N ARE:"; IF (1-N) 1.2; TYPE 11! QUIT
@#l1.2¢ SET I=1; SET P[I]=2; SET TRY=1; TYPE %4.,0,!1,2

¢1.3¢ SET TRY=TRY+2; SET J=1; IF (TRY-N) 1,b,1.,4; TYPE 111, QUIT
g1.4¢ 1F (P[J]-FsQr(TRY)) 1.5,1,5; S I=I+1; S P[I]=TRY;T 1,TRY;GOTO 1.3
—@1.5¢ IF (TRY/P[J])~FITR(TRY/P{J])) 1.2,1.3; SET J=J+1; GOTO 1,bL

»*

*GO

N :53¢

PRIMES <= N ARE: The program, as shown, will compute
=+ 2 and remember up to the first 101

=+ 3 prime numbers (N=530) using 4K

=+ 5 FOCAL. This limit does not exist

=+ T if more memory is available.
=+ 11

=+ 13
=4 17
=+ h99
=+ 503
=+ 509
=+ 521
=+ 523
=+ 529

Note that this program also uses the primes it computes as trial divisors in determining additional ;rimes.
This technique greotly increases the efficiency of the program, and students should be encouraged to
develop such an algorithm.

The conjecture that all even numbers greater than 4 can be represented as the sum of two
prime numbers appeals to many students, provides an excellent introduction to techmiques for writing

one program which will utilize the results of another, and provides further work with subscripts. Following

1z

121

is a flowchart which represents an algorithm for determining which two prime numbers from an arbitrarily

long list of primes (Pi) have a sum that equals each of the even numbers 6 through an ASKed END.

[ASK FOR VALUE
OF END

SET J=2
INCREMENT E By 2

/L IS NUMBER NEEDED
&Y FOR CORRECT SUM.

SETIsy

INCREMENT J BY {

E CANNOT BE
FORMED WITH
AVAILABLE PRIMES

A program which follows this flowchart is:

g2.1¢ ASK ?END ?!; SET E=k

g2.2¢ SET E=E+2; SET J=2; IF (E-END) 2,3,2.3; TYPE !!; QUIT

g2.3¢ SET I=J; SET L=E-P{I]

g2.4¢ IF (L-P[I]) 2.5,2.6,2.7

g2.5¢ SET J=J+1; IF (P[J)) 2.3,2.8,2.3

g2.6p TYPE %h,p E," wplJgl,r ,pi1},:; coTO 2.2

g2.7¢ SET I=I+1; IF (P(1]) 2.4,2.5,2.4

22.8¢ TYPE %4.¢,E," CAN'T BE FORMED WITH PRIMES CHECKED."!; GOTO 2.2

s

122

{

Note that the program is written as Part 2
so that the prime generating program shown
on page 117 can also be used.

To run this program, one first
DOes Part 1, the prime generating program,
to obtain the desired list of primes, then DOes
Part 2 to form the even number as the sum of

two primes.

The output of such a run is:

¥DO 1

N :100
PRIMES
= 2
=+ 3
=+ 5
= 7
= 11
= 13
=+ 17
=+ 19
=+ 23
=+ 29
=+ 31
= 41
=+ 43
=+ h"{
=+ 53
= 59
=+ 61
=+ 67
=+ T1
= T3
=+ 79
= 83
=+ 89
=+ 97

<= N ARE:

< — Part 1 generates

the primes which
are then used in -

Part 2. S —.

1

119

23

=+

w4

[
WOUIVWw_VIwVTwAvViwwVwIviwwAlviwalIviwViwwywlIVTwwIviwvVwwiwwawww

A more interesting output can be obtained if a shorter list of primes is used, For example:

HFHERHRR
VIV WHWIVWVWWWVWWUIWWW

BE
23

D0 1

N o2l

PRIMES <= N ARE:
=+ 2

=4 3

=4 5

=+ 7

=+ 11

=+ 13

=+ 17

=+ 19

=+ 23

*D0 2

END :50

=+ 6 =+
=+ 8 =+
=+ 1¢ =4+
=+ 12 =+
=+ 1L =+
=+ 16 =+
=+ 18 =+
=+ 2¢ =+
=+ 22 =+
=+ 24 =+
=+ 26 =+
=+ 28 =+
=+ 39 =+
=+ 32 =+
=+ 34 =+
= 36 =+
=+ 38 =+
=+ kg =4
= L2 =+
=+ L4 CAN'T
=+ L6 =+
=+ L8

+
wn
A ~1

*

Part 1 is used to generate a shorter list of primes.

LN T O { IO (2 T | IO IO [I |
+++++++ T

=+
FORMED
=+

WITH PRIMES CHECKED,
23

CAN'T BE FORMED WITH PRIMES CHECKED.
CAK’T BE FORMED WITH PRIMES CHECKED.

A very good assignment for use when teaching the concepts of programming and/or flowchart-

ing is that of writing a program which will tell whether or not an ASKed number N is prime. Such a

program, although brief, involves: the elimination of improper input; the use of functions; use of loops

and branching; and usually more than one part. Typical of student written programs which accomplish

this task is:

120

124"

p—

3

$1.p1 C PROGRAM TO DETERMINE IF GIVEN NUMBER IS PRIME
f1.1p ASK N

$1.15 IF (N-2) 2.2; IF (FITR(N)-N) 2.2,1.18,2.2

$1.18 IF (3-N) 1.2,1,L4,1.L

§l.2¢ SET D=2; DO 2

§1.30 SET E=FSQT{(N); FOR D=3,2,E; DO 2

$1.4p TYPE " IS PRIME."!!; QUIT

p2.1¢ IF (N/D-FITR(N/D)) 2.3,2.2,2.3
#2.2¢ TYPE " IS NOT PRIME,"!!; QUIT
$2.3¢ CONTINUE

*

The outputs of two runs of this program are:

#GO
:97 IS PRIME.

%GO
1003 IS NOT PRIME.,

*

Note that this program will properly identify negative numbers, fractions, and all positive integers

1 through 2047, Since this restriction is imposed by the restriction placed on FOCAL's FITR function,
students should be encouraged to "discover" a method for eliminating this problem. A very simple
technique for doing this is to repeatedly subtract 2047 from the number to be used in the FITR function
until the number lies in the range 0 tk sugh 2047. A modification of the previous program which reduces

all arguments of the FITR function to an acceptable magnitude is:

§1.p1 C PROGRAM TO DETERMINE IF GIVEN NUMBER IS PRIME
1,19 ASK N

$1,15 IF (N-2) 2,23 SET R=N
$1,16 1IF (FITR(R)-R) 2.2,1,
1,18 IF (3-N) 1.2,1.4,1.
§1.2¢ SET p=23 DO 2

$1.3¢ SET E=FSQT(N); FOR D=3,2,E; DO 2
¢1.4¢ TYPE " IS PRIME."!!; QUIT

; IF (R-2047) 1.16,1.16;SET X=R; DO 3; SET R=X
18,2,2

$2.¢5 SET R=N/D; IF (R-2@4T) 2,1,2.1; SET X=R; DO 3; SET R=X
$2.1¢ IF (R-FITR(R)) 2.3,2.2,2,3

$2.2¢ TYPE " IS NOT PRIME."!!; QUIT

#2.3¢ CONTINUE

$3.1¢ FOR II=2¢L7,2047,X; SET X=X-2@47
»

121

The output of two runs of this program are:

%GO
:1¢¢489 IS NOT PRIME,

*GO
:89899 IS PRIME,

Note that in this program, Part 3 is used to reduce the argument to be used in:the FITR function in Step

1.16 and Step 2.10.,

A program for the computation of the least common multiple (LCM) of three ASKed integers
A, B, and C is a good assignment when introducing the techniques of elementary factoring as well as
when teaching programming. A straightforward algorithm for computing LCM is to allow the trial LCM
to be the largest of the-three ASKed integers. If this trial LCM is divisible by A, B, and C, it is the
correct answer, If not, a new trial LCM is formed by adding the largest of A, B, and C to the old
trial LCM and repeating the divisibility tests. A program using this algorithm is a good exercise in

using the IF statement. A typical student program which fellows this algorithm is:

$1.61 C PROGRAM TO FIND LEAST COMMON MULTIPLE OF THREE INTEGERS
@1.45 ASK ?2A 27,2 B 2,2 C ?2,"
¢1.@8 SET A= FABs(A), SET B=FABS(B); SET C=FABS(C)
$1,1¢ SET BIG=A; IF (B-BIG) 1.15; SET BIG=B
@1.15 IF (C-BIG) 1.2; SET BIG=C
$1.2¢ SET LCM=BIG
1,30 IF (FITR(LCM/A)-LCM/A)
$1.4¢ IF (FITR(LCM/B)-LCM/B)
¢1.5¢ IF (FITR(LCM/C)=-LCM/C)

I $#1.60 TYPE %8.8, ?7LCM ?2,11; Q

1
1
1
U
¢1.7¢ SET LCM=LCM+BIG; GOTO 1,
»

The outputs of two runs of this program are:

GO

A :5 B :3 C :11 LCM =4 165
*GO

A :12 B :8 ¢ :16 LCM =+ 48

122

126

e

Aruitoxt provided by Eic:

Note that this program will properly handle the entry of negative integers but will not work if fractions

or zero are entered. Experience with this assignment has shown that students quickly "discover" or

understand this algorithm, and the writing of the program does indeed reinforce their classroom intro-

duction to the use of the IF statement. This same algorithm can be extended to finding the LCM of N

ASKed integers by

general program is

using subscripted variables. Although useful when teaching programming, the more

decidedly more difficult for students to write and is probably not useful as an assign-

ment immediately following the version involving only three ASKed numbers. However, this assignment

is excellent when subscripts have been introduced and students are gaining confidence in their program-

ming ability. A program which satisfies this assignment is:

1,19
pr.2¢
p1.3¢0
%140
g1.5¢
$1.60
gL.70

g2.1¢
g2.2¢

#3.10
g3.2¢
*

ASK ?N7,!3; FOR I=1,N; ASK A[I]
SET BIG=A[1]; FOR I=2,N; DO 2
SET LCM=BIG

SET SIGNAL=§¢; FOR I=1,N; DO 3
IF (SIGNAL) 1.6,1,7,1.6
SET LCM=LCM+BIGj; GOTO 1,k
TYPE %8,0,1?LCM 7,113 QUIT
IF (A[I]-BIG) 2.2,2.2; SET BIG=A[I]
CONTINUE

IF (LCM/A[T]-FITR(LCM/A[I])) 3.2,3,2; SET SIGNAL=1l; SET I=N
CONTINUE

Note that this program assumes that the user will enter all positive integers. The outputs of three runs

of this program are:

%GO
N:5

:8 24
LCM =+
¥Go
N:h
ti5 :2
LCM =+
*GO
N:3
13 :1
IL.CM =+
*

Note that to write

:16 :hg :36
T2¢

5 135 :1¢5
525

1 :15
2145

this program the student had to know how to determine the largest of a list of N

numbers (step 1.2 and part 2) as well as how to use a variable as a signal flag. Experience with this

123

127

assignment has demonstrated that some students will have difficulty in changing th> question, "Is the
trial LCM divisible by all input integers 7", as used in the algorithm of the previous example, to the
question, "Is the trial LCM not divisible by at least one of the input integers ?", as used in the
algorithm for this program. Although this question need not be changed in order to obtain a valid
algorithm, doing so allows the development of a much more efficient algc-ithm,

The problem of computing thz greatest common divisor (GCD) is a natural companion te
that of computing the LCM. Programs using algorithms quite similar to the two preceding LCM examples
are often very beneficial as assignments. A tutorial tactic that has been very successful with students
learning to program is to present the algorithm and progrum for computing the LCM of three ASKed
numbers in class and then to assign, without further discussion, the problem of writing a program to
compute the GCD of three ASKed numbers. Even if students have written one or both of these GCD
programs successfully, they should be encouraged to write a program which uses the Euclidian algorithm
for computing the GCD of two ASKed positive integers. Need for such an algorithm is naturally
motivated when the cémpufcfion of the GCD for some sets of numbers requires more than a brief period
of time. Uses for a brief GCD algorithm wiil also occur when complete polynomial factoring programs

are written later in the year. A working program using the Euclidian algorithm is:

$1.¢1 ¢ EUCLIDIAN ALGORITHM FOR GREATEST COMMON DIVISOR
$1.1¢ ASK "THE TWO NUMBERS ARE ",N," ",D

¢1.2¢ IF (D-N) 1.3,1.3; SET S=N; SET N=D; SET D=S

$1.3¢ SET R=N-D*FITR(N/D); SET N=D; SET D=R; IF (R) 1.3,1.%4,1.,3
gl.4¢ TYPE " GCD ",%h.@,N, 11

*

The outputs of two runs of this program are:

*GO

THE TWO NUMBERS ARE :544 ;5321 GCD =+ 17
*GOo

THE TWO NUMBERS ARE :19 :31 GCD =+ 1

*

Note that this program contains no provision for 1ojecting negative numbers, zero, or fractions .

An effective assignment that can be used wher: discussing either factoring or multiplication

? Q

of monomials is the writing of a program which generates a problem of the farm AxP * =Bx ,

ASKs the user to solve the problem, and then verifies his solution. If studants have not yet been

128

e

O

ERIC

Aruitoxt provided by Eic:

introduced to the use of random numbers, the ussignment might be changed to having the program ASK

for the numbers A, P, B, and Q. A program using random numbers which -ietermines the missing *orm is:

$1.1¢ SET A=FITR(FRAN()%15); SET P=FITR(FABS(FRAN()): _°

$1,15 SET B=FITR(FRAN()*15)%A; SET Q=FITR(FABS(¥RAL(. *_35)+P

$1.2¢ TYPE "PROBLEM IS: "ORL B ATRXEY %2.8,," MES ? "
(1,25 TYPE "EQUALS "o&h.g,B,"*X1"%2,.¢,9,!

¥1.3@ ASK 1"MISSING TERM IS: ",C,"#X4" R,!:

g1, 40 IF (C*A-B) 1.T,1.5,1.7

g1.5¢ IF (R+P-Q) 1.7,1.%,1.7

@#1,6¢ TYPE "CORRECT"!!; QUIT

$1.7¢ TYPE "TRY THAT TERM AGAIN"!!; GOTO 1.2

*

The outputs of two runs of this program are:

%GO
PROBLE IS: =+ 3%X+=+ 3 TIMES ? EQUALS =— 12%Xt=+ 6
MISSING TERM IS: :-h ¥X+:3 —
—_ —_ Input
CORRECT
%GO
PROBLEM IS: =+ 6#X+=+13 TIMES ? EQUALS =+ 2L#x3=+26

MISSING TERM IS: :4 #*X4:2

TRY THAT TERM AGAIN

MISSING TERM IS: :4 #*Xt :13

CORRECT

Note that the random numbers are chosen in such a way that B is always divisible by A and Q is always
greater than P. These restrictions avoid the necessity of negative expone~ts and decimals in the ASKed
answer . If students are familiar with negative exponents or are willing to enter the ASKed coefficient
with six significant digits, then these restrictions are ﬁot necessary. Since a run of this program appears
very tutoriai, remember that the suggested use of this problem is as an assignment for students to program,
The nature of a run of the program simply facilitates checking the students' work .

Another program which can be used effectively as a student assignment when discussing mono-
mial factors of ¢ polynomial is the writing of a program which ASKs for all constant terms in the expres-

sion A x P Y Q + B x R Y S, computes the monomial factor (if any), and then types the factored expression.

125

129

A program which does this is:

#1.85 TYPE "EXPRESSION TO BE FACTORED IS "1

@1.1¢ ASK A,"*X4" ,P,"%Yt" q," PLUS JBEXAY R MY 5 1)

g1.2¢ SET N= FABS(A) SET D=FABS(B); IF (D N) 1.3; SET I=N; SET "N=D; qET D=I
#1.3@ SET RE=N- D*FITR(N/D) SET N=D; SET D=RE; IF (RE) 1 3,1.h,

@l.4¢ SET XL=P;SET XS=R; IF (XL-%S) 1. 5,153 SET I=XL. 3SET XL= xs SET XS=1I
¢1.5¢ SET YL=Q;SET YS=S; IF (YL-YS) 1,6,1.6;SET I=YL;SET YL=YS; SET YS=I
g1.6¢ IF (1-N) 1.7; IF (xI+vL) 1. 7,1, 65 1.7

#1.65 TYPE "EXFRESSION CONTAINS NO MONOMIAL FACTOR., "!! QUIT

$i.7¢ TYPE "FACTORED EXPRESSION IS: "!,%3.0,N,"*X+" %2, ¢ XL," *y+" YL
$1.75 TYPE " (",%3.0,A/N," #*X+" %2.¢,P-XL," *Y+" » Q- YL

$1.78 TYFE " PLUS ",%3 @,B/N," e %2 #,R=XL," Ry pn ,S=YL,")"11

»

The outputs of two runs of this program are:

%GO
EXPRESSION TO BE FACTORED IS:
:12 ¥X4:0 #Y+:5 PLUS :36 *Xt:h *ys.2

TACTORF.D EXPRESSION IS:
=+ 12 ¥X4=+ O ¥Y4=+ 2 (=+ 1 ¥X4=+ 0 ¥*Yt=+ 3 PLUS =+ 3%X4=44 ¥Y+=+ o)

*G0
EXPRESSION TO BE FACTORED IS:
:T #X4+:5 ¥Y4:0 PLUS :9 *¥X4:0 #Y4:10

EXPRESSION CONTAINS NO MONOMIAL FACTOR

#

Note that this program-uses the Euclidian algorithm (lines 1.2 and 1.3) for finding the greatest common
divisor of A and B. This program does not factor =1 from A and B when appropriate, Certainly, finding
the common factor =1 should be expected if students have had sufficient programming experience.
Techniques for doing this are shown in subsequent programs. This program also assumes all exponents
are ertered as positive integars and that the values of A and B are such that A * B# 0. Elimination of
these restrictions may be included as part of the assignment if that will not interfere with the main point

of the lesson.

126

130

Absolute Value 11,28,38,61-62,64
Accuracy, increasing
output 99-100
Adding machine 51-52
Addition
of kinary numbers 65-58
in modular arithmetic 43
on number line 57-61
of polynomials 87-88
of vectors 57-61
Additive inverse 38-39.63
Algebraic precedence, rules of 1-6
Angles, complementary and
supplementary 80-81
Approximate solution to
equation 7677
Ascending order 55-56
Associative properly 37-38,63
Bases, numbers in other 19-22
Binary
Boolean Algebra 38
counter 14
search 33-35
Boolean Algebra, binary 38
Checking student work,
computer 4~6,29-30
Closure 39-40,63
Combining terms 64-65
Commutative property 37-38,63
Complement arithmetic 65-68
Complementary angles 80-81
Congruent integers 41-42
Consecutive integer problems 81-82
Continved fraztions 2-3
Conversion of
base N integers to base 10 19-21
base 10 intege:s to base 2 21-22,65-68
base 10 integers to base N 2i-22
base 10 integers to integer
mod m 41
fractions to decimal form 99-102

131

INDEX

Counter, binary

Decimals, repeating and
terminating

Descending order
Direct commands
Distance, rate, time problems
Distributive property
Divisibility tests
Division
monomial by monomial
binomial by monomial

with negative numbers
synthetic

Divisor, greatest common
Elements of a set
End around carry

Equalities, plot on
number line

Equality
of sets
sign of
test for

Equations

literal

solving
any first degree
indicating each step
using iterative techniques
by substitution (1 variable)
by substitution (2 varibles)
by user using basic theorems

Equivalent inequalities
Etror, round=-off

Euclidian algorithm for

GCD
Even number, test for
Exponential notation
Factorial

Factoring
monomials
monomials frombinomials

14

100
53-55
1-4,7,37 64
78-79
37-38,63
109

96-97
97-98
62-63

98

124
18-19
67-68

9-12,57

74-75

49-50,75-78
50-51

75-78

23-25

33

46-48

70-72
7

124
109
7-9
1o

124-125
125-126

Factors of integers
all

prime
Formula evaluation

Fractions
continued
converted to decimals

Generator, random number
Goldbach's conjecture
Greatest common divisor

Unequalities

equivalent

plot on number line
single
pairs

signs of

solving
by substitution (1 variable
by substitution (2 variables)
showing all steps

Infinite sets
Integers, conruent

Integral solutions
to equations
to inequalities

Intersection of sefs

Inverse, additive and
multipicative

Least Common Multiple

Literal equations

Magic squares

Mean

Mixture problems

Moduiar arithmetic

Multiple, Least Common

Multipication

in modular arithmetic

with negative numbers

with polynomials
binomial to a power
monomial to ¢ power
monomicl times polynomial
polynomial times polynomicl
special products

110-112
112-114

74-75

2-3
99-102

103-104
117-120
124

70-72

9-12,57
72-74
6-7

25-28
31-33
69-70

39
41-42

24-25,31-33
27-28,31-33

16-17

38-39,63
122-124
74-75
82-84
51-52
79-80
40-44
122-124

43
62-63

95-96
88-89

90
90-92
92-95

Multiplicative inverse

Negative numbers, usein
theorems

Nines complement

Number guessing
computer guess user'snumber
user guess computer's number

Number line

Addition of vectors
Plotting equalities
Plotting inequalities
Subtraction of vectors

Numbers in other bases
Ordering

Parentheses, expressions without
Pascal's triangle

Plotting on the number line
Equalities
Inequalities

Polynomials

Addition

Division
Binomial! by monomial
Monomial by monomial
Synthetic

Multiplication
binomial to a power
monormial to a power
monomial times polyriomial

polynomial times polynomial

special products
Subtraction

Precedence, ruvles of algebrai=

Prime numbers
as factors
generation of
test for
twin and triple

Proving theorems

Random number generator
Random walker problem
Reciprocals, modular arithmetic
Reflexive property

Repeating decimals

128

132

38-39,63

63-64
68

35
33-34

57-61
9-12,57
9-12,57,72-74
57-61

19-22

53-56

2

92-93,103-107

912,57
9-12,57,72-74

87-88

97-98
96-97
98-99

95-96
88-89

90
90-92
92-95
87-88

-6

112-114
114-117
120-122

116

45
103-104
59-61
44

37

106

$oee -

Round-off cirors 7 Theorems, proving 45

integral solution over ASKed
interval
verifying student solutions

Squares, magic
Standard deviation
Statistics

Subsets

Subtraction
of binary numbers
of polynomials
of vectors

Summation notation
Supplementury angles
Symmetric property
Synthetic division
Terminating decimals

Test for prime numbers

27-28,31-33
25-27

82-84
51-53
51-53
13-14

65-68
87-88
57-61

52
80-81
37
98-99

- 100
120-122

133

Search, binary 33-35 Transitive property 37
& -
Sets Twin and trigle primes 116
- eleme-nfs of 18-19 Union of sets 16-17
equality of 15
infinite 39 Variables, introduction of 3-5
intersection of 16-17 Vectors, addition and
subsets 13-14 \ . 57-6]
onion of 15-17 substraction 7-
. . . . Verifying student solution
- Signs of equality and inequality 6-7 to equations 23-24
Simulation programs to inequalities 25-27
adding machine 51-52 _
- balls dropping through array 104-107 Walker, random 59-61
power station control 84-85 Word problems 29-30
random walker 59-61
Solution, analysis of students 4-6
Solving Equations
using basic theorems 46-48
integral solution over ASKed
interval 24-25,33
any first degree 49-50,75-78
any first degree showing each
step 50-51
verifying student solutions 23-24
- - Solving Inequalities

dlilgliltfall

o (DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

/J% Printed in U.S.A.

